A General Synthesis of Cyclic Bottlebrush Polymers Facilitated by Graft-Through Ring Expansion Metathesis Polymerization

23 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Bottlebrush polymers represent an important class of macromolecular architectures, with applications ranging from drug delivery to organic electronics. While there is an abundance of literature describing the synthesis, structure, and applications of linear bottlebrush polymers using ring-opening metathesis polymerization (ROMP), there are comparatively less reports on their cyclic counterparts. This lack of research is primarily due to the difficulty in synthesizing cyclic bottlebrush polymers, as extensions of typical routes towards linear bottlebrush polymers (i.e., “grafting-through” polymerizations of macromonomers with ROMP) produce only ultrahigh molar mass cyclic bottlebrush polymers with poor molar mass control. Herein, we report a ring-expansion metathesis polymerization (REMP) approach to cyclic bottlebrush polymers via a “grafting-through” approach utilizing the active pyr-CB6 initiator developed in our lab. The resulting polymers, characterized via GPC-MALS-IV, are shown to have superior molar mass control across a range of target backbone lengths.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Synthetic and experimental procedures, NMR spectroscopy data, GPC data and characterization
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.