A Self-Assembled Multiphasic Thin Film as an Oxygen Electrode for Enhanced Durability in Reversible Solid Oxide Cells

14 May 2024, Version 1

Abstract

The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells. Electrochemical characterization shows remarkable oxygen reduction reaction (fuel cell mode) and oxygen evolution activity (electrolysis mode) in comparison with state-of-the-art bulk electrodes, combined with outstanding long-term stability at operational temperatures of 700 ºC. The disordered nanostructure was implemented as a standalone oxygen electrode on commercial anode-supported cells, resulting in high electrical output in fuel cell and electrolysis mode for active layer thicknesses of only 200 nm (>95% decrease in critical raw materials with respect to conventional cathodes). The cell was operated for over 300 hours displaying excellent stability. Our findings unlock the hidden potential of advanced thin-film technologies for obtaining high-performance disordered electrodes based on nanocomposite self-assembly combining long durability and minimized use of critical raw materials.

Keywords

thin films
nanocomposites
air electrodes
solid oxide cells
electrolysis

Supplementary materials

Title
Description
Actions
Title
SUPPORTING INFORMATION A Self-Assembled Multiphasic Thin Film as Oxygen Electrode for Enhanced Durability in Reversible Solid Oxide Cells
Description
Supporting information includes further explanation on structural and electrochemical characterizations along with surface-sensitive analysis by XPS and tables with fitted parameters from electrochemical and chemical investigation on the nanostructured thin film material presented in this work.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.