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A Re-Interpretation of the Normative Foundations of Majority Rule1 

Introduction    

In contemporary democratic theory, majority rule holds a special place among group de-

cision making rules on two alternatives. As Robert Dahl put it, substantive debate tends not to 

focus on whether majority rule is a necessary condition for democracy, but whether it is suffi-

cient (Dahl 1989, 135). Mathias Risse noted that when there are multiple alternatives, there is the 

tendency to assume that the normative desirability of majority rule generalizes to multiple alter-

natives, though such generalizations are often questionable (Risse 2004). The most common 

normative generalization of majority rule is called the Condorcet criterion. We will later give a 

more formal definition of Condorcet methods (i.e. voting systems that satisfy this criterion), but 

we give a brief description here.  

Roughly speaking, a voting system (or more technically speaking, a social welfare func-

tion) consists of two procedures: balloting and aggregation (Merrill III and Nagel 1987). Typical-

ly in the literature, the balloting procedure of voting systems is ignored and left implicit (Goodin 

and List 2006). But balloting procedures are important; otherwise, for example, plurality voting, 

as usually defined,2 would be classified as a Condorcet method. That would be a classification 

that is generally rejected.  

                                                           
1 Author Information: Mahendra Prasad, Department of Political Science, UC Berkeley, Email: 

mrprasad@berkeley.edu 

2 A conventional definition of plurality voting assumes voters submit a ballot with one alterna-

tive ranked above all others, with the remaining alternatives ranked equally. The only other kind 

of ballot permitted is when the voter expresses indifference between all alternatives (Goodin and 

List 2006).   
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If there are n alternatives under consideration, then the balloting procedure of a Condor-

cet method must allow each voter the opportunity to express any of the n! logically possible 

preference orders (that are strict, complete, and transitive) on their ballot.3 The aggregation pro-

cedure of a Condorcet method requires that if there exists an alternative, say ax, which beats all 

other alternatives under consideration one-on-one via majority rule, then such an ax should be 

socially ranked above all other alternatives under consideration. 

What I seek to show in this piece is that another Arrovian voting system,4 which we will 

call unrestricted non-polychotomous voting (UNV), does a better job of generalizing normative 

arguments for majority rule than do other Arrovian voting systems. That said, one issue that is 

beyond the scope of this piece is the concern that voters may misrepresent their preferences on 

their ballots to game the outcome of the election. This is a concern which is endemic to virtually 

all voting systems, as demonstrated by the Gibbard-Satterthwaite theorem and related results (A. 

Taylor 2005). Those results have encouraged the development of the mechanism design litera-

ture, where a designer with particular norms in mind, seeks to construct a decision making 

mechanism that achieves such norms given that players (e.g. voters) are strategic. Our focus is on 

the designer’s norms themselves. When voters are not trying to misrepresent their preferences to 

                                                           
3 We define strict, complete, transitive, and preference order in more detail later, but for now we 

will give this less formal definition of strict complete transitive preference order. A strict com-

plete transitive preference order ranks exactly one alternative in first place, exactly one alterna-

tive in second place, and so forth such that all n alternatives are ranked.  

4 The Arrovian framework is the framework that Kenneth Arrow laid out for voting systems in 

his landmark book Social Choice and Individual Values. Arrovian voting systems are voting sys-

tems that fall within that framework (Arrow 1963). 
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game the outcome, voting systems can be understood as representing norms. For example, as-

suming its balloting procedure, plurality voting can be understood as representing a norm that the 

group decision should maximize the number of voters who get their first preference implement-

ed. What we are trying to do here is give arguments as to why a mechanism designer might seek 

norms represented by UNV, rather than the norms represented by Condorcet methods. As such, 

we leave issues of ballot misrepresentation aside for mechanism designers.5  

UNV can be informally defined as follows: Specifically, a voter chooses some non-empty 

subset of the alternatives under consideration; call this her choice set, while the remaining alter-

natives, if any, are her non-choice set. The voter is indifferent between any two alternatives with-

in her choice set; she is also indifferent between any two alternatives in her non-choice set. 

However, she prefers any alternative in her choice set over any alternative in her non-choice set. 

The aggregation procedure of UNV counts the number of voters that place an alternative, say ax, 

in their respective choice sets. If ax occurs in more choice sets than say ay, then ax is socially 

ranked above ay. If ax and ay occur in the same number of choice sets, then UNV socially ranks 

ax and ay equally. 

It is important to distinguish approval voting from UNV. With approval voting, a voter 

marks each alternative she approves of; alternatives are socially rank ordered by the number of 

approvals they receive (Brams and Fishburn 2007). But it is important to note, approval voting, 

as typically defined, is a non-Arrovian voting system, as it uses information beyond voter prefer-

ence orders as inputs. For example, a voter may prefer ax over ay, but approve both. Meanwhile 

UNV is clearly an Arrovian voting system, where ballots are preference orders and the output is 

                                                           
5 There is evidence to suggest that in elections with large numbers of voters, voters tend to be 

sincere (Feddersen, Gailmard and Sandroni 2009). 
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a preference order. This is important because we are going to show that among Arrovian voting 

systems, UNV better generalizes majority rule to multiple alternatives than do any other Arrovi-

an voting system. 

In his 1989 classic, Democracy and Its Critics, Robert Dahl put forth four arguments he 

believed were the four best arguments for why majority rule is the optimal democratic group de-

cision rule for two alternatives (Dahl 1989, 136-137).  Specifically, we will argue that UNV gen-

eralizes those four arguments as good as or better than do Condorcet methods or any other Arro-

vian voting systems generalize those four arguments to multiple alternatives.  

We proceed in the following fashion. First, we will present some basic definitions neces-

sary for our discussion. Second, we will proceed through each of Dahl’s four arguments for ma-

jority rule and summarize why UNV generalizes these arguments to multiple alternatives as good 

as or better than other Arrovian voting systems. Third, we deal with a main rebuttal of UNV, that 

it overly restricts voters’ ballots, by discussing three different general areas of democratic deci-

sion making where UNV is not overly restrictive. Fourth, roughly speaking, we show that in are-

as where the UNV balloting procedure is appropriate, William Riker’s contention (that populist 

democracy is unintelligible due to the meaninglessness of the aggregation of individual opinions 

into a social opinion, because of Arrow’s theorem) is considerably weakened because we can 

show that when it is legitimate to appropriately weaken unrestricted domain, UNV can uniquely 

satisfy much stronger versions of the remaining conditions of Arrow’s theorem. Finally, in the 

Supporting Information section, we provide proofs for theorems asserted in the paper. However, 

the reader should read the Basic Definitions section prior to reading the Supporting Information.       

Basic Definitions 
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Let A be a finite set of mutually exclusive alternatives, and let A be some finite subset of 

n mutually exclusive alternatives from A where n > 1. Let V be a finite set of mutually exclusive 

voters, and let V be a finite subset of m mutually exclusive voters from V where m > 1. In ac-

cordance with the Arrovian framework, each voter’s ballot is a complete and transitive prefer-

ence order of the n alternatives. A preference order is complete in the sense that for any two al-

ternatives in A, say ax and ay, exactly one of three relations is true: ax ≻ ay (i.e. ax is ranked above 

ay), ay ≻ ax (i.e. ay is ranked above ax), or ax ~ ay (i.e. ax and ay are ranked equally). A preference 

order is transitive in the sense that for any alternatives ax, ay, and az in A it is the case that: ([(ax ≻ 

ay) and (ay ≻ az)] implies ax ≻ az), ([(ax ≻ ay) and (ay ~ az)] implies ax ≻ az), ([(ax ~ ay) and (ay ≻ 

az)] implies ax ≻ az), and ([(ax ~ ay) and (ay ~ az)] implies ax ~ az). For our purposes, it is as-

sumed that all preference orders are transitive and complete.  

If in a preference order, ax ~ az, then ax and ay belong to the same part of that preference 

order. All alternatives that are equally ranked with each other within a preference order will be 

expressed within the same parentheses when expressing that preference order. For example, if in 

a preference order, ax, ay, and az are ranked equally and no other alternatives in A are ranked 

equally with them in that preference order, then their part in the preference order will be ex-

pressed as (ax ay az). Note, if for example, no alternative is equally ranked with say aw in a given 

preference order, then its part in the preference order is expressed as (aw). Now, if say aw ≻ax in a 

given preference order, then the part to which aw belongs will be expressed to the left of the part 

to which ax belongs in that given preference order. For example, (aw)(ax ay az) means “aw is 

ranked above ax and ay and az, while ax and ay and az are ranked equally”.    

Note, each preference order consists of a part or parts. For example, consider the prefer-

ence order (aw)(ax ay)(az). That preference order consists of three parts, where (aw) is the first 
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part, (ax ay) is the second part, and (az) is the third part. Note, (aw) is called the first part because 

there are zero parts ranked above it, (ax ay) is the second part because there is exactly one part 

ranked above it, and so forth.  

A ballot that contains exactly one part is called a trivial ballot. A ballot that contains ex-

actly two parts is a dichotomous ballot. A ballot that contains more than two parts is called a pol-

ychotomous ballot. A collection of m ballots, one from each voter, is a profile. 

Social Welfare Functions and Voting Systems   

A social welfare function (SWF), takes a profile as its input and outputs a preference or-

der of A.6 To avoid confusion between inputted ballots and the outputted preference order, we 

will refer to preference orders outputted by SWFs as social rank orderings, or simply rank order-

ings.    

As noted before, a SWF can be understood as consisting of two aspects: a balloting pro-

cedure and an aggregation procedure. The balloting procedure of a SWF specifies which ballots 

are available to voters. Thus for example, if there are c number of ballots allowed by a balloting 

procedure for a particular SWF and the SWF is a total function, then for each of the cm logically 

possible profiles, the SWF assigns a rank ordering. If the SWF is a partial function, then there 

exist some profile(s) among the cm profiles for which the SWF does not output a rank ordering. 

The profile domain of an SWF is the subset of the cm profiles for which the SWF outputs a rank 

                                                           
6 While in theory, SWFs could be used to decide the members of a committee; it seems more 

normatively appropriate to conceptualize and use the rank ordering of alternatives produced by 

SWFs as an order of implementation. That is, ax should only be considered for implementation if 

all other alternatives ranked above it in the social rank ordering are not able to be implemented.  
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ordering. The aggregation procedure specifies the rank ordering outputted for each profile in the 

profile domain of an SWF.  

There are a few balloting procedures we need to clarify, as they will be used later to de-

scribe SWFs. The unrestricted balloting procedure contains all logically possible preference or-

ders of the n alternatives. The strict balloting procedure contains all preference orders on the n 

alternatives with exactly n parts, but no other preference orders. The UNV balloting procedure 

contains every non-polychotomous preference order on the n alternatives, and no other prefer-

ence orders. The trivial balloting procedure allows only the trivial preference order. 

Among aggregation procedures, the one of most importance to us is the majority rule ag-

gregation procedure, or majority aggregation procedure for short. Consider any two alternatives 

from A, say ax and ay. Suppose p is some profile in the profile domain of a given SWF.  If the 

SWF uses the majority aggregation procedure, then for any such ax and ay and p, the following 

three rules apply: (1) If more voters in p hold ax ≻ ay than hold ay ≻ ax, then the SWF must social-

ly rank ax above ay for p. (2) If an equal number of voters in p hold ax ≻ ay as hold ay ≻ ax, then 

the SWF must socially rank ax and ay equally for p. (3) If more voters in p hold ay ≻ ax than hold 

ax ≻ ay, then the SWF must socially rank ay above ax for p.    

We now proceed to define some SWFs. 

Majority Rule SWF: Technically speaking, this SWF is undefined for elections where n > 2.7 The 

majority rule SWF, where n = 2, uses the unrestricted balloting procedure. It uses the majority 

aggregation procedure. 

                                                           
7 There are many SWFs that reduce to the majority rule SWF when there are exactly two alterna-

tives. To prevent confusion of what is the majority rule SWF when generalized to multiple alter-
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Absolute Majority Rule SWF: Identical to the majority rule SWF, except it uses the strict ballot-

ing procedure. 

Trivial Voting SWF: Identical to the majority rule SWF, except it uses the trivial balloting proce-

dure. 

Condorcet Method SWFs: Technically speaking, we are talking about a class of SWFs that share 

common features, as opposed to a single SWF. These SWFs’ commonalities are as follows. First, 

the n! ballots allowed by the strict balloting procedure must be allowed by a Condorcet method 

SWF’s balloting procedure. Now Condorcet method SWFs may allow more ballots than just 

those in the strict balloting procedure, but it must at least have those. Second with respect to the 

aggregation procedure, if there exists some alternative, say ax, in the profile, such that ax defeats 

each of the other n – 1 alternatives in the profile, one-on-one, via the majority aggregation pro-

cedure, then such an ax is ranked above all other alternatives in the social rank ordering of alter-

natives for that profile. 

UNV SWF: It uses the UNV balloting procedure and majority aggregation procedure. 

 For every logically possible pair (A, V), given A and V, a voting system assigns a social 

welfare function. If a voting system applies the same SWF to every possible (A, V) given A and 

V, then the voting system has the same name as the SWF. For example, the voting system which 

applies the UNV SWF to every possible (A, V) given A and V, is the UNV voting system. Note 

however, it is possible for a voting system to use different SWFs when (A, V) changes. For ex-

ample, we could define the crazy voting system as a voting system where, if m is even it socially 

                                                                                                                                                                                           

natives, it helps to leave it undefined for n > 2. Thus, technically speaking, the majority rule 

SWF would be what we later define as indecisive for n > 2. But restricted to n = 2, majority rule 

is decisive. Similarly for the absolute majority rule and trivial voting SWFs.     
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rank orders alternatives in alphabetic order, and if m is odd it socially rank orders alternatives in 

reverse alphabetic order.       

Four Arguments for Majority Rule  

  Most defenses of Condorcet methods proceed from defending majority rule, and then as-

serting that if some alternative beats all other alternatives under consideration, one-on-one, via 

majority rule, then such an alternative should be the highest socially ranked.  

 Risse gives six reasons for majority rule (Risse 2004). Christian List gives three reasons 

(List 2013). While these are both excellent overviews of arguments for majority rule, in addition 

to the need for brevity, I will focus on the arguments put forth by Robert Dahl for two reasons. 

First, the arguments he gave largely overlapped with others’, like Risse’s and List’s. Second, 

Dahl’s arguments are probably among the most known and accepted arguments for majority rule 

in the political philosophy research community, so responding to them seems especially perti-

nent.   

 In his classic, Democracy and Its Critics, Dahl says that the four arguments he presents 

for majority rule are “… the strongest arguments for majority rule I know…” in the context of 

two alternatives (Dahl 1989, 136). After presenting his four arguments, Dahl discusses how 

problems arise when we allow more than two alternatives, and how there might be other decision 

procedures to consider, but how ultimately, while majority rule is imperfect, so are the other pos-

sible procedures (Dahl 1989, 135-162). We will proceed thru each of the four arguments, one by 

one, showing along the way how the UNV voting system does just as good or better of a norma-

tive job as Condorcet method voting systems and any other voting system at generalizing the ar-

gument to multiple alternatives.  

May’s Theorem: Majority Rule as a Necessary Consequence of Reasonable Requirements 
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May’s theorem uniquely characterized majority rule for two alternatives on an unrestrict-

ed balloting procedure with four normative conditions: decisiveness, anonymity, neutrality, and 

positive responsiveness.8 Dahl argues that the four conditions of May’s theorem are conditions 

we’d want any reasonable voting system to have; this is roughly the argument Dahl makes for 

the four conditions (Dahl 1989, 139-141): We want decisiveness because we don’t want situa-

tions where the voting system leaves the election undecided.9 We want anonymity and neutrality 

because we want voters to be treated equally, and (under certain boundary conditions, according 

to Dahl) we usually want alternatives to be treated equally. We want positive responsiveness, 

one, to prevent minority rule, and two, to ensure that if all voters but one is indifferent, the re-

maining voter’s preference can determine the outcome in that remaining voter’s favor. It just so 

happens, due to May’s theorem, that when there are two alternatives, and voters are using the 

unrestricted balloting procedure, majority rule is the unique voting system that satisfies those 

four conditions.  

 Given Dahl’s argument, one might be tempted to assert, that since majority rule is so 

normatively desirable, then any alternative that beats all other alternatives in A one-on-one via 

majority rule should be socially ranked highest, regardless of the balloting procedure. This would 

superficially appear to be a natural generalization of May’s theorem to multiple alternatives. But 

it’s not quite so straightforward. 

                                                           
8 Formal definitions of these four conditions are in the Supporting Information. 

9 Decisiveness can also be defended as an equality of expression condition, because roughly 

speaking, it says that if some voter is allowed to express some ballot, any other voter should be 

allowed to express that ballot.  
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 Goodin and List demonstrated that May’s theorem was just a two-alternatives special 

case of a characterization of plurality voting system (or plurality rule as they called it) for multi-

ple alternatives (Goodin and List 2006). Furthermore, it has since been shown that a very large 

number of voting systems, a voluminous number of which are not Condorcet methods, using a 

variety of SWF balloting procedures (including unrestricted, strict, and UNV balloting proce-

dures) satisfy the four conditions (Prasad 2016). One of those voting systems is UNV. If UNV 

can satisfy the four conditions, there doesn’t seem to be anything particularly advantageous for 

Condorcet methods with respect to May’s theorem.  

 In addition to satisfying the four conditions, UNV satisfies those four conditions in a 

uniquely compelling way by essentially resolving what may be called May’s dilemma. Specifi-

cally, May noted that with some restricted balloting procedure, one could satisfy his four condi-

tions and Kenneth Arrow’s independence of irrelevant alternatives (May 1952, 684). What he 

did not specify is which voting system, that satisfies the five conditions, uses SWFs with the 

least restrictive balloting procedure. As is clarified and proven in the May’s dilemma (i.e. Theo-

rem 1) portion of the Supporting Information, UNV is the unique voting system that uses SWFs 

with the least restrictive balloting procedure which satisfies decisiveness, anonymity, neutrality, 

positive responsiveness, and independence of irrelevant alternatives (IIA). Any other voting sys-

tem that satisfies those five conditions must use SWF balloting procedures which are more re-

strictive than those used by the UNV system. The importance of these results is further clarified 

when we discuss the relationship between Arrow’s theorem and May’s theorem.  

Rae-Taylor Theorem: Maximization of Utility 

 First off, we should make clear at the outset of this argument that with standard utility 

theory (i.e. von Neumann-Morgenstern utility theory), if at least one voter prefers ax over ay and 
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at least one voter prefers ay over ax, it is impossible to assert that ax or ay maximizes the overall 

utility of the m voters. This is because in standard utility theory, interpersonal utilities are in-

comparable (K. J. Arrow 1963, 9-11). For example, if one voter assigns x two utils and another 

voter assigns x two utils, we cannot say with standard utility theory that both voters equally value 

x. Dahl was aware of this, but said in practice we are forced to make such nebulous utility as-

sessments (Dahl 1989, 143). This leaves us two options. One, we could just say that arguments 

that voting systems maximize the overall utility of voters are practically false. Two, we could 

assume non-standard utility theories and make arguments on those bases. Given that Dahl took 

the second option, we will proceed in the same manner and assume non-standard utility theories. 

 Dahl’s argument that majority rule maximizes utility is the Rae-Taylor theorem (List 

2013; Dahl 1989, 142-144, 355-356).10 The theorem can be roughly stated as follows. Suppose 

that m voters are confronted with a yes or no vote. Suppose that for any given voter, her prior 

probability of voting yes is ρ, and her prior probability of voting no is 1 – ρ, where 0 < ρ < 1 and 

the m voters’ votes are identically and independently distributed (i.e. iid). After all voters vote, 

exactly one of two outcomes occur: yes wins or no wins. The question the Rae-Taylor theorem 

answers is which voting rule maximizes the probability that any given voter is in the winning 

coalition?11 If we assume that for any given voter, her utility from being a member of a winning 

                                                           
10 Technically speaking, the Rae-Taylor theorem is a justification for what we would call abso-

lute majority rule, not majority rule. That said, we will be able to generalize the Rae-Taylor theo-

rem in a manner that makes this difference inconsequential. 

11 Technically speaking, the Rae-Taylor theorem asks which voting rule minimizes the number 

of losing coalitions (i.e. maximizes the number of winning coalitions) any given voter is a mem-

ber of over multiple elections. However, because the theorem assumes how voters vote from 
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coalition is u > 0 and her utility from being in a losing coalition is –u, then the Rae-Taylor theo-

rem specifies which voting rules maximize the utility of any given voter. Informally, the question 

can be restated as follows: Suppose there are m coins, one of which is gold while the remaining 

coins are silver. Each of the m coins has a probability ρ of landing heads, and the coin flips are 

all iid. Without your knowledge, each coin is flipped; if a coin lands heads, then it placed in an 

opaque “heads” urn; if a coin lands tails, then it is placed in an opaque “tails” urn. The only in-

formation you are given is the number of coins in each urn. Which urn should you choose to 

maximize your probability of choosing the urn with the gold coin? 

 In terms of our coin analogy, Douglas Rae and Michael Taylor showed you should al-

ways choose the urn with more coins. In other words, the Rae-Taylor theorem shows conditions 

under which absolute majority rule maximizes the probability of any given individual being in 

the winning coalition.12  

 What might be called the Rae-Taylor dilemma is: how is their theorem meaningfully 

generalized to multiple alternatives? What we prove in the Theorem 2 (i.e. Rae-Taylor dilemma) 

portion of the Supporting Information is that the Rae-Taylor theorem is a two-alternatives special 

case of a multiple-alternatives UNV theorem. Of course, there may also be a multiple alterna-

                                                                                                                                                                                           

election to election is mutually independent, and because not being in the losing coalition is 

equivalent to being in the winning coalition, their question can be mathematically reduced to our 

statement of the question (Rae 1969; M. Taylor 1969).    

12 One could potentially normatively justify the equiprobability and statistical independence as-

sumptions of the Rae-Taylor theorem via the cardinal utility and veil of ignorance arguments 

made in (Harsanyi 1953). 
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tives generalization of the Rae-Taylor theorem using a voting system with a polychotomous bal-

lot, but any such SWF will either fail one of May’s conditions or IIA.  

One potential criticism of using UNV to generalize the Rae-Taylor theorem is that it can 

appear to allow only two levels of utility; how can this be justified? Using a non-standard utility 

theory, one way to justify this is by making use of Herbert Simon’s concept of satisficing, which 

has been well documented and studied in the psychology and economics literature (Simon 1955; 

Simon 1978; Simon 1987; Gigenrenzer, Todd and ABC Research Group 1999; Schwartz, et al. 

2002; Byron 2004; Altman 2015). Specifically, each voter i has her own aspiration level, which 

is a utility threshold, say ui(l), such that if the utility that i receives from ax, say ui(x), is greater 

than ui(l), then i would consent to ax. If ui(x) is less than or equal to ui(l), she would not consent 

to ax. 

 When satisficing in practice, upon discovery of an alternative that is above their aspira-

tion level, the individual chooses that alternative and terminates her search. With respect to satis-

ficing in the context of UNV, a voter would place alternatives that she believes are above her as-

piration level in the first part of her ballot, and the remaining alternatives in the second part. (If 

she believes all alternatives in A satisfice, or that no alternative in A satisfices, then she would 

submit the trivial ballot). Clearly, UNV in such a manner maximizes the number of voters who 

are satisficed; thus if we are using satisficing theory as our non-standard utility theory, then UNV 

can maximize utility.  

Maximization of Self-Determination 

 In clarifying what he means by maximizing self-determination, Dahl states that “Given 

the boundaries of a particular political system, the composition of the demos, and the need for a 

collective decision on some matter… majority rule ensures that the greatest possible number of 
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citizens will live under laws they have chosen for themselves” (Dahl 1989, 138). One way to in-

terpret the meaning of “chosen for themselves” is focused on consent. One defense for a consent 

based notion of self-determination is that provided by satisficing utility theory, which we dis-

cussed earlier, because UNV maximizes consents. Another defense of self-determination as con-

sent can be construed as contractual. As Dahl noted, we assume background conditions (i.e. po-

litical system, the composition of the demos, and need for a collective decision) as given (Dahl 

1989, 138). The question is what do we mean by choosing for oneself given fixed background 

conditions? It is impossible to give a full answer to that question here; that said, I wish to provide 

a brief sketch to show what an answer might look like. 

For the sake of a concrete example, imagine there is a commons that can only be regulat-

ed in one way, but it is to be used by two different persons. We can imagine the two people hav-

ing some sort of deliberative discourse, hammering out details, and developing a contract to 

which both would consent to, that would clarify the regulations on the commons.  

Now suppose instead of two people, there were three people. In practice, this number of 

people is still small enough where we could imagine each person hammering out an individual 

contract with each of the other persons (i.e. person 1 with person 2, person 1 with person 3, and 

person 2 with person 3), and each person making sure their own two contracts do not conflict 

with each other.  

But if the number of people using the commons grows to four or five or m persons, even-

tually, it will become unwieldy for each person to negotiate m – 1 contracts that don’t contradict 

each other, and the commons to have (m – 1) + (m – 2) +…+ (1) = (m2 – m)/2 contracts which do 

not contradict each other. Eventually, there has to be another way. 
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We could imagine one other way to be something like this. Suppose there are m persons 

who must figure out how the commons will be regulated. We could imagine that there is some 

fair and reasonable deliberative discourse protocol. Eventually at some point, each individual is 

given the opportunity to propose potential contracts. We can call these potential contracts alter-

natives. Each of the m persons, who are now voters, would mark each alternative to which they 

are willing to consent. If there exists some alternative which is consented by all voters, then such 

an alternative becomes the implemented contract. 

Now this requirement for unanimous consent might work, especially if m is small. But as 

m becomes large, say a thousand or a million or a billion, there will be a point where the re-

quirement for unanimous consent will become untenable because just one person is sufficient to 

prevent the implementation of some contract. Voting systems which use polychotomous SWFs, 

such as Condorcet methods, will either fail one of May’s conditions or IIA.  

However, in our commons example, especially if m is large, UNV seems like a reasona-

ble way to choose a contract because it maximizes consent while satisfying May’s conditions and 

IIA. Furthermore, because consent is transitive, no supporters of losing alternatives can claim 

that their alternative lost to an alternative with less consent. Thus, UNV can be constructed such 

that it can maximize self-determination when voters are sincere.  

Condorcet’s Jury Theorem: More Likely to Produce Correct Decisions 

 The simplest version of this argument goes something like this. Suppose there is some 

statement that is in exactly one of two states: true or false. (In this context, truth and falsity of the 

statement can be construed as two alternatives.) A group of m voters is trying to determine 

whether the statement is true or false. Suppose that each voter in the group has the same proba-

bility π, where 0 < π < 1, of correctly determining the state of the statement. Further assume that 



 Electronic copy available at: https://ssrn.com/abstract=3239621 

17 
 

each voter’s determination is mutually independent of the other voters’ determinations. Condor-

cet’s jury theorem shows that if π > ½, then absolute majority rule more likely chooses the cor-

rect state than does absolute minority rule. Furthermore, under such conditions, as the number of 

voters increases, the probability that absolute majority rule chooses the correct state quickly, but 

asymptotically, approaches 100% accuracy. 

 In the 1980s, Peyton Young characterized a Condorcet method, often called the Kemeny-

Young method, which generalized the jury theorem to multiple alternatives (Young 1988). How-

ever, it is easy to show that the jury theorem can be generalized to UNV for multiple alternatives 

(Ben-Yashar and Kraus 2002).  

 In the simplest version, the generalization of the jury theorem to UNV can be stated as 

follows. Suppose there are n statements, each of which is in exactly one of two states: true or 

false. There are m voters. For any given statement, each voter has a probability π, where 0 < π < 

1, of correctly determining the state of the given statement. Furthermore, each voter’s determina-

tion for each statement is mutually independent of determinations on other statements and of de-

terminations by other voters. If a given voter determines that a given statement is true, she places 

it in the first part of her ballot; if she determines it is false, she places it in the last part of her bal-

lot. (Of course if a voter determines that all statements under consideration are true or that all are 

false, she will submit a trivial ballot). The generalization of the jury theorem to UNV asserts that 

if π > ½, then UNV produces the rank ordering of statements from most likely true statement to 

least likely true statement (Prasad 2012). This result has been generalized in various ways for 
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UNV (Brams and Kilgour 2014).13 Given that Condorcet’s jury theorem can be generalized to 

multiple alternatives with UNV, the jury theorem does not seem to provide a notable normative 

reason as to why Condorcet methods would be superior to UNV. 

 But in addition to being able to construct a jury theorem result with UNV, it is also a 

unique voting system with respect to solving what may be called Condorcet’s dilemma. Nicolas 

de Condorcet in the 18th century had noticed a huge paradox with voting systems that tracked 

truth; specifically, it could be the case that a voting system chose the rank ordering of alterna-

tives which was most likely true out of all possible rank orderings, but an alternative which such 

a rank ordering ranks above all other alternatives, has a lower probability of being true than some 

other alternative (Young 1988).  

 This problem can occur for at least two reasons. One, when there are polychotomous bal-

lots, varying the π value between ½ and 1 can cause the problem (Young 1988, 1238). Two, be-

cause of the intransitivity of majority rule known as Condorcet’s paradox. For example, under 

the conditions of Condorcet’s jury theorem, whenever a majority prefers ax over ay, then ax is 

more probably true than ay if they are the only two alternatives under consideration. If there are 

multiple alternatives, then it is possible that applying the majority aggregation procedure to each 

possible pair of alternatives could cause an intransitive cycle. But because SWFs are required to 

output a transitive preference order, an SWF may have to choose a rank ordering that goes 

against majority rule on some pairs of alternatives; thus, it may be forced to rank a less likely 

true alternative above alternatives which are more likely true (Young 1988).  

                                                           
13 Technically, these generalizations are for approval voting, but the results easily follow for 

UNV when voters are truth seekers (i.e. prefer a true alternative over a false alternative, are in-

different between any true alternatives, and are indifferent between any false alternatives). 
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 After we informally clarify some conditions which are formally stated in the Theorem 3 

(i.e. Condorcet’s dilemma) portion of the Supporting Information, we can state our uniqueness 

result for UNV. First, the majority aggregation condition requires every SWF of the voting sys-

tem use the majority aggregation procedure. (This first condition implies satisfaction of IIA.) 

Second, roughly speaking, the epistemic voting system condition requires that there exist 

background conditions where the following two assertions are true about every SWF in a voting 

system that satisfies the condition: (1) under appropriate background conditions, a SWF outputs 

a rank ordering with ax ≻ ay iif ax is more probably true than ay, and (2) under appropriate back-

ground conditions, a SWF outputs a rank ordering where ax ~ ay iif ax and ay have an equal prob-

ability of being true. (In other words, our SWF is required to produces rank orderings which 

track truth under appropriate background conditions.)  

With those normative conditions stated, we can roughly state Theorem 3, which is proven 

in the Supporting Information: First, there exists no voting system, which regardless of back-

ground conditions, will satisfy the decisiveness, neutrality, majority aggregation, and epistemic 

voting system conditions. Second, regardless of background conditions, no polychotomous vot-

ing system can satisfy the decisiveness, neutrality, majority aggregation, and epistemic voting 

system conditions. Third, there exists a set of background conditions where UNV satisfies the 

decisiveness, neutrality, majority aggregation, and epistemic voting system conditions. Fourth 

and most importantly, UNV is the unique voting system with the least restrictive balloting pro-

cedure which has a set of background conditions which allow it to satisfy the decisiveness, neu-

trality, majority aggregation, and epistemic voting system conditions.  

Truth, Justice, and the General Will 
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 A major objection to UNV is the assertion that important political phenomena rarely oc-

cur in such a manner non-polychotomous preferences are sufficient for voters to express their 

opinion. I do not make the claim that every political phenomenon is sufficiently covered by two 

levels of preference. However, I do think they sufficiently cover many important political phe-

nomena. I will discuss three kinds of phenomena. The hope is to demonstrate that UNV allows 

for sufficient expression in many different important political domains. 

 The first domain is truth, often associated with epistemic democratic theory. While there 

exist many-valued logics, two-valued logic is overwhelmingly the most used. If we seek our vot-

ing system to track some external objective truth (like the UNV generalization of the Condorcet 

jury theorem), UNV seems to be sufficient because alternatives are only in one of two states: true 

or not true. Assuming we are restricted to Arrovian voting systems, when alternatives are only in 

one of two states, is it necessary that voters be able to say something other than true or not true? 

Perhaps we could ask voters to assign probabilities of truth to each alternative, but this would be 

non-Arrovian. In addition to tracking objective truth, UNV can potentially also track truth by 

consensus. For example, each voter could be asked to choose each alternative which does not 

cause pain to her. If for the sake of argument, we assume pain is a subjective experience, then 

UNV can track the number of voters who do not feel pain from any given alternative, even 

though this is a truth that is based on the size of the number of voters in the consensus and not 

some external objective truth. 

 The second domain is Rawlsian justice. John Rawls believed that constitutions and legis-

lation in a just society should be just. But what is the nature of this justice? For example, is it 

possible for two laws to be just, but one more just than the other? This is a complicated issue that 
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merits more space, but there is evidence to suggest that Rawls believed that a large area of legis-

lation and constitutions had to be guided by a binary notion of justice. Rawls states:  

“Now the question of whether legislation is just or unjust, especially in connection 

with economic and social policies, is commonly subject to reasonable differences of 

opinion.  In these cases judgment frequently depends upon speculative political and eco-

nomic doctrines and upon social theory generally. Often the best that we can say of a law 

or policy is that it is at least not clearly unjust…. It is often perfectly plain and evident 

when the equal liberties [i.e. first principle] are violated…. But this state of affairs is 

comparatively rare with social and economic policies regulated by the difference princi-

ple” (Rawls 1999, 174). 

 

“… [T]he four-stage sequence is a device for applying the principles of justice…. 

Of course, this test is often indeterminate: it is not always clear which of several constitu-

tions, or economic and social arrangements, would be chosen. But when this is so, justice 

is to that extent likewise indeterminate. Institutions within the permitted range are equally 

just, meaning they could be chosen; they are compatible with all the constraints of the 

theory. Thus on many questions of social and economic policy we must fall back upon a 

notion of quasi-pure procedural justice: laws and policies are just provided that they lie 

within the allowed range….” (Rawls 1999, 176).   

 

 Our comments on binary truth and Rawlsian justice definitely deserve more in-depth 

analysis in another piece. But I hope they give some sense of the scope with which UNV allows 

for sufficient expression. The final example I wish to discuss is Jean-Jacques Rousseau’s general 

will. Specifically, I want to show how UNV resolves a concern that is present with the general 

will when voters use polychotomous ballots. 

Even in an ideal Rousseauian state, if voters are determining the general will through a 

series of majority rule elections, where ballots represent preference orders, then clearly the gen-

eral will, “divined” from such elections, could be muddled with intransitive cycles due to the in-

transitivity of majority preference, even if no individual voter changes their opinions between 

elections.  

UNV seems to better fit Rousseau’s general will than methods using polychotomous bal-

lots. Rousseau states: “When any law is proposed in the assembly of the people, the question is 
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… if it is conformable or not to the general will (Rousseau 1947, 95).” Note, the voter is not ask-

ing himself if one proposed law is better than another with respect to the general will? The voter 

asks if a proposed law satisfies the general will or not? This is a binary question. If this is the 

case, UNV can ensure that the intransitive majority cycles possible with polychotomous ballots 

do not affect the general will.  

Responding to Riker’s Criticism of Populist Democracy 

All of this is extremely crucial with respect to interpreting Rousseau and populist concep-

tions of democracy. William Riker, in his magnum opus, Liberalism Against Populism (1982), 

argued that populist conceptions of democracy, such as Rousseau’s, were fatally flawed as they 

could not produce a meaningful aggregation of individual opinions into a general will, since all 

Arrovian voting systems are mired in the possibility of outputting intransitive cycles or violating 

some condition of Arrow’s theorem (Riker 1982, 65-136). What our results here suggest is that 

individual opinions can potentially be meaningfully aggregated into some sort of general will. 

Kenneth Arrow had two versions of his famous theorem, one from 1951 and one from 

1963.14 The 1951 version used stronger conditions than the 1963 version,15 which means that had 

there existed a SWF which satisfied the conditions of the 1951 version, it would necessarily sat-

                                                           
14 Technically, Arrow’s 1963 version is based on a French version he published in 1952 (Arrow 

1963, 97). 

15 Technically speaking, Arrow’s unrestricted domain condition from 1963 is stronger than his 

“condition 1” from 1951. But Arrow notes that this is only used to simplify exposition of the 

proof, and the proof of his 1963 version can still be done with something weaker than unrestrict-

ed domain (Arrow 1963, 97). 
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isfy the conditions of the 1963 version. The fact that no SWF satisfies the conditions of the 1963 

version implies that no SWF satisfies the conditions of the 1951 version (Arrow 1963).  

The stronger versions of conditions are unrestricted domain, non-dictatorship, non-

imposition, positive association, and Arrow’s IIA.16 Note that non-dictatorship, non-imposition, 

positive association, and Arrow’s IIA are weaker versions of anonymity, neutrality17, positive 

responsiveness, and IIA, respectively.18 Thus, if we could find a voting system which satisfied 

unrestricted domain, anonymity, neutrality, positive responsiveness, and IIA, it would satisfy the 

conditions of both versions of Arrow’s theorem. Of course, Arrow’s theorem shows no such vot-

ing system exists.  

But suppose we were in a situation where we could legitimately assert that voters have 

(or at least should have) only non-polychotomous preferences. We might be able to assert this if 

we are dealing with particular situations where the decisions regard epistemic democratic truth or 

Rawlsian justice or Rousseauian general will in the manner we discussed earlier. If such is the 

case, then instead of having an unrestricted domain condition, it may be legitimate to have an 

                                                           
16 These are the conditions from Arrow’s 1951 version, with the exception of substituting Ar-

row’s condition 1 from 1951 with the stronger unrestricted domain condition from 1963. 

17 Technically speaking, there exist SWFs which always output a tie between all alternatives and 

are neutral, but fail non-imposition. But such SWFs are useless. Among useful SWFs, that is 

among SWFs that do not always output a tie between all alternatives, any neutral useful SWF 

necessarily satisfies non-imposition. 

18 Note Arrow’s IIA is defined for a fixed A (Arrow 1963, 27). Our IIA allows the set of alterna-

tives to vary. For example, the crazy voting system would satisfy Arrow’s IIA but fail our ver-

sion. Thus, our IIA is thus a stronger condition. 
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unrestricted non-polychotomous domain condition, meaning we require the SWF to be decisive 

and for its balloting procedure to have all logically possible non-polychotomous ballots. But our 

characterization of UNV as uniquely satisfying May’s conditions and IIA on the UNV proce-

dure, which is a corollary of the approval voting theorem from (Goodin and List 2006), shows 

that if we replaced condition 1 (or unrestricted domain) with an unrestricted non-polychotomous 

domain condition, UNV could uniquely satisfy very strong versions of Arrow’s theorem’s re-

maining conditions. The claim being made here is not that the UNV balloting procedure is ap-

propriate in every context; rather in contexts where the UNV balloting procedure is appropriate, 

Arrow’s theorem can be practically overcome. Thus in those contexts, Riker’s Arrow’s theorem 

based criticism of populist democracy is not justified. 

 If democracy is epistemically (i.e. true or not true) or contractually (i.e. consent or not 

consent) based, it would suggest that Riker’s Arrovian criticisms of populist democracy are sig-

nificantly weaker. Future Rikerian criticism of populist democracy would have to rely more on 

his Gibbard-Satterthwaite theorem and strategic voting based arguments.  

Overall, if one wishes to stay in the Arrovian framework and if one agrees with the ar-

guments given by Dahl, our work here very strongly demonstrates one ought to generalize ma-

jority rule with UNV. The only other choices would seem to be to reject the Arrovian framework 

or the foundational arguments of majority rule. 

Supporting Information  

 The reader is advised to read the Basic Definitions section prior to reading this section. 

This Supporting Information section is organized in the following manner. First, there is back-

ground which gives more definitions required for the proofs in this section. Second, Theorem 1 

specifies the proof for the solution to May’s dilemma. Third, Theorem 2 resolves the Rae-Taylor 
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dilemma by providing the first generalization of the Rae-Taylor theorem to multiple alternatives, 

and shows how the Rae-Taylor theorem is a special case of this generalization when there are 

two alternatives. Fourth, Theorem 3 provides a solution to Condorcet’s dilemma.     

Background 

The size of a part refers to the number of alternatives in the part. For example, for the bal-

lot (aw)(ax ay)(az), the first part is of size 1 since it has only one alternative in it, the second is of 

size 2, and the third of size 1. In general, let us refer to the size of the first part of a ballot as e1, 

the size of the second part as e2, of the third part as e3, and so forth. If two ballots on the same A 

have the same number of alternatives, the same number of parts, and are such that (their e1 is the 

same, their e2 is the same, and so forth), then the two ballots are said to be of the same composi-

tion. For example, both (aw)(ax ay)(az) and (ay)(aw az)(ax) are of the same composition, but (aw)(ax 

ay)(az) and (aw ax)(ay)(az) are not of the same composition.  

The set of all ballots of a given composition is called a bundle. For example, if A = {aw, 

ax, ay, az}, then the 1-2-1 composition bundle (i.e. the bundle of ballots where e1 = 1, e2 = 2, e3 = 

1) for A would consist of the following twelve ballots: (aw)(ax ay)(az), (aw)(ax az)(ay), (aw)(ay 

az)(ax), (ax)(aw ay)(az), (ax)(aw az)(ay), (ax)(ay az)(aw), (ay)(aw ax)(az), (ay)(aw az)(ax), (ay)(ax 

az)(aw), (az)(aw ax)(ay), (az)(aw ay)(ax), and (az)(ax ay)(aw). That bundle is the list of all logically 

possible ballots of the 1-2-1 composition given A = {aw, ax, ay, az}. In general, for a composition 

with n alternatives and η parts, where e1 + e2 + … + eη = n, the number of ballots in that compo-

sition bundle is [n!/(e1! e2! … eη!)].  

If a given ballot occurs in a given balloting procedure, and every logically possible ballot 

with the same ballot composition as the given ballot also occurs in that given balloting proce-
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dure, then that given ballot is called a bundled ballot. If every ballot in a balloting procedure is a 

bundled ballot, then the balloting procedure is called a bundled balloting procedure.  

For example, majority rule contains three bundled ballots and two bundles. If A = {ax, 

ay}, one bundle is the trivial composition ballot bundle, which has as its sole member, (ax ay), 

and the other bundle is the 1-1 composition bundle which contains exactly two ballots, which are 

(ax)(ay) and (ay)(ax). In majority rule, since all ballots come bundled with all the other ballots of 

their respective bundle, all of majority rule’s ballots are bundled ballots, and therefore its ballot-

ing procedure is a bundled balloting procedure. 

May’s theorem characterized majority rule with four normative conditions defined on 

two alternatives: decisiveness, anonymity, neutrality, and positive responsiveness. We will de-

fine those four conditions here but for SWFs with any n; our generalizations reduce to May’s 

conditions when n = 2. 

Anonymity: A SWF is anonymous if for every profile in the SWF’s profile domain, it is the case 

that if the ballots in a profile are permuted among voters to create a new profile (and this is the 

only change between the two profiles), then the output of the SWF is the same for both profiles. 

A voting system is anonymous if every SWF of the voting system is anonymous. 

Decisiveness: A SWF is decisive if for each logically possible profile given the balloting proce-

dure of the SWF, the SWF outputs a rank ordering.19 A voting system is decisive if every SWF 

of the voting system is decisive. 

                                                           
19 In other words, if there are c ballots in the balloting procedure of a SWF given a particular A 

and particular V, then a decisive SWF is a total function which must output a rank ordering for 

each of the cm logically possible profiles.  
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Neutrality: A SWF is neutral if for every profile in the SWF’s profile domain, it is the case that a 

permutation of alternatives in a profile causes the alternatives to be permuted in the same manner 

in the outputted rank ordering. A voting system is neutral if every SWF of the voting system is 

neutral.  

Positive Responsiveness: Positive responsiveness is the most complicated of May’s four condi-

tions to express. We will need to define a few terms to define positive responsiveness including 

raising ax relative to ay, an ax positive flip relative to ay, pre-flip profile, and post-flip profile. 

First, let ax ≿ ay mean ax is ranked above or equal to ay. Furthermore if we want to express the 

relation between two alternatives in a particular preference order, we will index it. For examples, 

if the ballot of voter i expresses ax ≻ ay, then this relation is expressed as ax ≻i ay; if the rank or-

dering outputted for profile p expresses ax ~ ay, then this relation is expressed as ax ~p ay.   

Now suppose one of three things. One, a ballot has ay ≻ ax but changes to a ballot with ax ~ ay. 

Two, a ballot has ay ≻ ax but changes to a ballot with ax ≻ ay. Three, a ballot has ax ~ ay, but 

changes to a ballot where ax ≻ ay. (If either of these three things happen, we are not concerned 

with what happens with the other (n2 – n – 2)/2 pairwise comparisons on the ballot. As long as 

the ballot after the change is still a complete and transitive preference order, the other (n2 – n – 

2)/2 pairwise comparisons in the ballot can change or remain the same.) If any of those three 

things occur, it is called raising ax relative to ay. 

Consider two profiles for which A is the same for both profiles and V is the same for both pro-

files. In each profile, there is exactly one voter vj, and for every vi, where i ≠ j, it is the case that 

the ballot of vi is identical in both profiles. (This does not necessarily mean that the m – 1 voters 

that are not vj have the same ballot in a given profile. All it is saying is that, for example, so long 

as j ≠ 1 if v1 has the ballot (ax)(ay az) in one profile then v1 has the ballot (ax)(ay az) in the other 
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profile, so long as j ≠ 2 if v2 has the ballot (ay)(ax)(az) in one profile then v2 has the ballot 

(ay)(ax)(az) in the other profile, and so forth.) The only difference between the two profiles is the 

ballot submitted by vj. Specifically, vj raises ax relative to ay. The profile prior to the raising is 

called the pre-flip profile. The profile after the raising is called the post-flip profile. Such a 

change of a profile from a pre-flip to a post-flip profile is called an ax positive flip relative to ay. 

In general, a SWF is positively responsive if it is the case for any ax and ay in A, that for every 

possible ax positive flip relative to ay (given the SWF’s profile domain), where the SWF outputs 

ax ≿ ay in the social rank ordering outputted for the pre-flip profile, the SWF also outputs ax ≻ ay 

in the social rank ordering outputted for the post-flip profile. A voting system is positively re-

sponsive if every SWF of the voting system is positively responsive. 

Independence of Irrelevant Alternatives: Define A2 as a set of two alternatives under considera-

tion, namely the alternatives ax and ay. Let A+ be a set of alternatives under consideration where n 

≥ 2 and A2 is a subset of A+. Let p2 be a profile on the set of alternatives A2 and the set of voters 

V. Let p+ be a profile on the set of alternatives A+ and the set of voters V. Let vi
2(ax, ay) be de-

fined as the pairwise comparison that the ballot of vi expresses between ax and ay in p2, and let 

vi
+(ax, ay) be the pairwise comparison that the ballot of vi expresses between ax and ay in p+. As-

sume that for every i, it is the case that vi
2(ax, ay) = vi

+(ax, ay). If for every such ax and ay and eve-

ry such p2 and p+, where both profiles are allowed by the voting system, the outputs of the voting 

system express the same pairwise comparison between ax and ay in its social rank orderings pro-

duced for both profiles, then such a voting system satisfies independence of irrelevant alterna-

tives (IIA).  

Approval voting is a non-Arrovian voting system, where as before, the set of alternatives is A and 

the set of voters is V. Each voter marks each alternative to which she consents to. Alternatives 
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are socially ranked ordered based on the number of marks they are given. (i.e. if ax is marked by 

more voters than ay, then ax is socially ranked above ay; if they receive the same number of 

marks, they are socially ranked equally.) 

Theorem 1: Solution to May’s Dilemma 

Theorem 1: UNV is the unique Arrovian voting system that uses SWFs with the least restrictive 

balloting procedure that satisfy decisiveness, anonymity, neutrality, positive responsiveness, and 

IIA.  

In other words, roughly speaking, any other Arrovian voting system that satisfies those 

five conditions must use SWFs with profile domains that are a proper subset of the UNV profile 

domain.  

Proof Sketch: The proof consists of four stages. First, we identify all SWFs that satisfy decisive-

ness, anonymity, neutrality, and positive responsiveness for n = 2. Those three SWFs are trivial 

voting, absolute majority rule, and majority rule, all of which use the majority aggregation pro-

cedure. Second, we demonstrate that any decisive voting system, where every one of its SWFs 

uses the majority aggregation procedure, must necessarily satisfy anonymity, positive respon-

siveness, and IIA. Third, we will show that any SWF balloting procedure that contains a poly-

chotomous ballot will cause a voting system to fail either decisiveness, anonymity, neutrality, 

positive responsiveness, or IIA. This primarily entails demonstrating that SWFs that use poly-

chotomous ballots will produce some intransitive rank ordering in order to satisfy the five condi-

tions, which is a contradiction. Fourth, piggybacking off of work by Goodin and List, we can 

show that on the non-polychotomous balloting procedure, which is the balloting procedure that 

contains all logically possible ballots which are not polychotomous ballots, UNV uniquely satis-
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fies the five conditions. This fourth stage of the proof can be considered a corollary of Goodin-

List’s approval voting theorem (Goodin and List 2006).20  

Proof (Stage 1): Identifying all SWFs that Satisfy May’s Four Conditions for n = 2 

 First note, when alternatives are permuted within a ballot, the ballot composition will re-

main the same. This means that in order for a SWF to satisfy neutrality and decisiveness, it must 

use a bundled balloting procedure. When there are exactly two alternatives, there are exactly 

three possible bundled balloting procedures: trivial, strict, and unrestricted. In his theorem, May 

showed that majority rule uniquely satisfies decisiveness, anonymity, neutrality, and positive re-

sponsiveness on the unrestricted balloting procedure for n = 2. It follows as corollaries that trivial 

voting (on the trivial balloting procedure) and absolute majority rule (on the strict balloting pro-

cedure) are the only other SWFs that satisfy May’s four conditions on n = 2.  

Proof (Stage 2): Any Decisive Voting System which uses the Majority Aggregation Procedure 

(on Every Pair of Alternatives for Every One of Its SWFs) Must Necessarily Satisfy Anonymity, 

IIA, and Positive Responsiveness 

 First, for any pair of alternatives, ax and ay, when ballots are permuted among voters, 

while it can change the profile (if the voting system is decisive), it does not change the number 

of voters who rank ax above ay, nor does it change the number of voters who rank ay above ax. 

Therefore the majority aggregation procedure would treat both profiles the same. Thus, every 

decisive voting system that uses the majority aggregation procedure on every pair of alternatives 

will be anonymous. 

                                                           
20 The theorem can also be considered a corollary of (Inada 1964) or (Maniquet and Mongin 

2015). 
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 Second, for any given pair of alternatives, ax and ay, the majority aggregation procedure 

only uses voters’ respective pairwise comparisons between ax and ay. Therefore, any voting sys-

tem where every one of its SWFs uses the majority aggregation procedure on every pair of alter-

natives will satisfy IIA. 

 Third, let us introduce some terminology. Let nx represent the number of voters who pre-

fer ax over ay in a profile p, and let ny represent the number of voters who prefer ay over ax in the 

same profile p. For ease of expression, we say the numbers of voters in p that prefer ax over ay 

and that prefer ay over ax is represented by (nx, ny). Now suppose there is an ax positive flip rela-

tive to ay from p to the profile pʹ. Then it must be the case that pʹ is such that (nx+1, ny), (nx, ny-1), 

or (nx+1, ny-1). But if the majority aggregation procedure outputs a rank ordering for p where ax 

≿ ay, then it must output a rank ordering for pʹ where ax ≻ ay. Thus, a voting system which uses 

the majority aggregation procedure on every pair of alternatives must satisfy positive respon-

siveness.              

Proof (Stage 3): Any Voting System with a SWF which uses a Polychotomous Ballot Must Fail 

One of May’s Four Conditions or IIA 

 First note that there are exactly three SWFs which satisfy decisiveness, anonymity, neu-

trality, and positive responsiveness on exactly two alternatives: majority rule, absolute majority 

rule, and trivial voting. But each of those SWFs use the majority aggregation procedure. There-

fore, any voting system that satisfies [(decisiveness, anonymity, neutrality, and positive respon-

siveness) on n = 2] and IIA must be such that each of its SWFs uses the majority aggregation 

procedure on every pair of alternatives, regardless of A or the value of n.    

 Now recall, if a decisive voting system is such that all of its SWFs use the majority ag-

gregation procedure on every pair of alternatives, then the voting system necessarily satisfies an-
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onymity, positive responsiveness, and IIA. The question is if such a voting system can also be 

neutral and use a SWF which has a polychotomous ballot in its profile domain?  

 Consider any particular A and V, say A* and V*, where n > 2. (Polychotomous ballots are 

impossible on n = 2).  Further consider a SWF, f.  Suppose that the balloting procedure for f con-

tains some polychotomous ballot for an election with A* and V*. Since n > 2, there will at least 

be three alternatives; let us call three of those alternatives ax, ay, and az. Now note, every poly-

chotomous ballot will have a first part, a second part, and a third part. Let “(ax…)(ay…)(az…)…” 

refer to a particular ballot where ax occurs in the first part (where other alternatives might occur 

in the first part), ay occurs in the second part (where other alternatives might occur in the second 

part), az occurs in the third part (where other alternatives might occur in the third part), and other 

alternatives exist in other parts of the ballot if the ballot has more than three parts. Let us say 

“(ax…)(ay…)(az…)…” occurs in the balloting procedure of f for A* and V*. Note, given its de-

scription, such a ballot must exist in any SWF balloting procedure with a polychotomous ballot. 

If f satisfies neutrality and decisiveness, then it must be the case that it uses a bundled balloting 

procedure; thus there must also exist particular ballots with the same composition as the 

“(ax…)(ay…)(az…)…” ballot that have the form “(ay…)(az…)(ax…)…” “(az…)(ax…)(ay…)…”, 

and “(az…)(ay…)(ax…)…”. To simplify notation for these particular ballots, let us call 

“(ax…)(ay…)(az…)…” the x-ballot, “(ay…)(az…)(ax…)…” the y-ballot, “(az…)(ax…)(ay…)…” 

the z-ballot, and “(az…)(ay…)(ax…)…” the anti-x-ballot. 

 Now given there are m voters, let ⌊𝑚/3⌋ be the floor function of m/3. We will now pro-

ceed through all possible cases and show there exists some profile that would require a decisive, 

anonymous, neutral, positively responsive, and IIA satisfying voting system have a SWF which 

is intransitive, which contradicts the definition of a SWF.  
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Case: m = 2 

 Exactly one voter submits the x-ballot and exactly one voter submits the z-ballot. Note by 

majority aggregation procedure, ax ≻p ay and ay ~p az. Thus, by transitivity, ax ≻p az, but by ma-

jority aggregation procedure, ax ~p az. Thus, we have a contradiction. In theory, we can general-

ize this case to profiles where m is even and n > 2. However we will still discuss other cases 

where m is even in order to produce examples where the cycle is caused without social ties.  

Cases: m = 3, m = 6, m > 8  

 Consider a profile where ⌊𝑚/3⌋ voters submit the x-ballot, another ⌊𝑚/3⌋ voters submit 

the y-ballot, and the remaining ⌊𝑚/3⌋ voters submit the z-ballot. Application of the majority ag-

gregation procedure to each possible pair of alternatives in the profile will cause an intransitive 

cycle where ax ≻p ay, ay ≻p az, and az ≻p ax. (If m > 8, this occurs regardless of what the remain-

ing (zero, one, or two) ballots in the profile are.)  

Cases: m = 4, m = 7         

Consider a profile where ⌊𝑚/3⌋ + 1 voters submit the x-ballot, another ⌊𝑚/3⌋ voters 

submit the y-ballot, and the remaining ⌊𝑚/3⌋ voters submit the z-ballot. This profile has a major-

ity cycle where ax ≻p ay, ay ≻p az, and ax ~p az. 

Cases: m = 5, m = 8 

Consider a profile where ⌊𝑚/3⌋ + 1 voters submit the x-ballot, another ⌊𝑚/3⌋ voters 

submit the y-ballot, yet another ⌊𝑚/3⌋ voters submit the z-ballot, and one voter submits the anti-

x-ballot. This profile has a majority cycle where ax ≻p ay, ay ≻p az, and az ≻p ax. 

Proof (Stage 4): Uniquely Characterizing UNV  

 The non-polychotomous balloting procedure is the least restrictive Arrovian balloting 

procedure (and least restrictive profile domain) without a polychotomous ballot, since it includes 
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all non-polychotomous ballots and is decisive. Goodin and List effectively proved that UNV is 

unique on the non-polychotomous balloting procedure in terms of satisfying the five conditions, 

but for approval voting (Goodin and List 2006). Here, we give a proof using our terminology that 

UNV uniquely satisfies the five conditions on the non-polychotomous balloting proce-

dure/profile domain.  

Note, as demonstrated earlier, that the only three SWFs which satisfy May’s four condi-

tions when n = 2 are majority rule, absolute majority rule, and trivial voting. All three use the 

majority aggregation procedure. Therefore, if there exists a voting system which satisfies May’s 

four conditions and IIA on the non-polychotomous profile domain, it will be equivalent to a vot-

ing system, where all of its SWFs apply the majority aggregation procedure to each of their re-

spective (n2 – n)/2 pairs of alternatives. That unique SWF is UNV. And it is easy to verify that 

the UNV system is decisive, anonymous, neutral, positively responsive, and IIA.  ■  

Theorem 2: A Solution to the Rae-Taylor Dilemma 

 As usual, assume there are n alternatives and m voters. As with the original Rae-Taylor 

theorem, for any given alternative, ax, any given voter has exactly one of two possible opinions, 

yes or no; we will assume that each voter has exactly two levels of utility on an alternative. For 

simplicity, we will say that for any voter vi, the utility she gets from the implementation of an 

alternative, say ax, to which she holds the opinion yes is ui(x) = u, where u > 0; the utility she 

gets from an alternative to which she holds the opinion no is –u.   

 Now imagine a 2n sided die.21 Each side states an n-digit binary number, such that all bi-

nary numbers of n length are expressed on the die. (For example, if n = 3, then each of the fol-

                                                           
21 The die throwing discussed here is only used as a representation of the independent trials oc-

curring when voters vote. Die throwing is the classical illustration of the multinomial distribu-
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lowing binary numbers will occur on the eight-sided die: 000, 001, 010, 011, 100, 101, 110, and 

111.) Exactly one binary number is expressed on each side of the die. Thus in general, let 

d000…000, d000…001, …, d111…111 represent each of the 2n sides of the die. Let 0 ≤ ρ(d000…000) ≤ 1 be 

the probability that the side d000…000 is thrown. Similarly define the probability of any other side 

being thrown. By definition, ρ(d000…000) + ρ(d000…001) + … ρ(d111…111) = 1. 

 Each of the m voters rolls the die once. However, no voter knows the result of any of the 

m die rolls. Instead for each roll, a recorder, who is not a voter, records which voter rolled the die 

and what side the voter had thrown. The side thrown by a voter represents which alternatives she 

holds the opinion yes for, and which alternatives she holds the opinion no for. In general, a one 

in the xth digit of the side thrown means the voter who threw that die holds yes for ax, while a 

zero for that digit would have meant she holds no for ax. (For example, if a voter throws the side 

d00101, this means that for alternatives a1, a2, and a4 she holds no, but for alternatives a3 and a5 

she holds yes.)  

 After the m die rolls, the recorder constructs a list which specifies the number of yeses 

each alternative got (which of courses implies the number of noes each alternative got). Let kx be 

the number of yeses ax received. As such, a list will take the form (k1, k2, …, kn). The recorder 

chooses one voter. The recorder gives the chosen voter the list. The chosen voter must then select 

exactly one alternative. After the chosen voter has selected an alternative, the recorder will in-

form the chosen voter whether she threw yes or no for the selected alternative. If she had thrown 

yes, she receives u utils, and if she had thrown no, she receives -u utils. Which alternative should 

she choose to maximize her expected utility? 

                                                                                                                                                                                           

tion, which is the underlying distribution for iid die throws. This simplifies exposition and com-

prehension of the underlying math.     
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 Let us be clear about what knowledge the chosen voter has. She knows the values of 

ρ(d000…000), ρ(d000…001), …, and ρ(d111…111). She knows that the m dies rolls are identically and 

independently distributed. She is not given information on who threw what side, or how many 

voters threw any given side. The only information she has about the rolls is the information pro-

vided in the recorder’s list. 

 First, for any given alternative ax, if kx voters said yes on ax, then the probability that the 

chosen voter said yes on ax is kx/m. This is because the die rolls were identically and inde-

pendently distributed. Therefore, if she selects ax her expected utility is [u(kx/m)]+[(-u)(m-kx)/m] 

= (u)(2kx-m)/m. When deciding between any two alternatives, ax and ay, the chosen voter should 

choose ax when (u)(2kx-m)/m > (u)(2ky-m)/m. But (u)(2kx-m)/m > (u)(2ky-m)/m iff kx > ky. Fur-

thermore, (u)(2kx-m)/m = (u)(2ky-m)/m iff kx = ky.  

From this it is easy to see that the voter should select the alternative which has the most 

yeses in order to maximize her utility. If two or more alternatives are tied for most yeses, then 

the chosen voter can select any of the alternatives tied for most yeses. Thus, approval voting is a 

voting system which will maximize her utility.  

Now technically, approval voting is a non-Arrovian voting system. That said, UNV can 

produce identical results as approval voting under the following assumptions. First, if a voter 

throws all zeros or all ones, then the recorder can document it as a trivial ballot, because the vot-

er holds the same utility for all alternatives. If a voter throws at least one zero and at least one 

one, the recorder can document it as a dichotomous ballot, where alternatives that got ones are 

recorded in the first part of the ballot, and alternatives that got zeros are recorded in the second 

part of the ballot. (This is the recorder simply transcribing utilities as preference orders.) When 

creating the list to provide to the chosen voter, the list is instead (κ1, κ2, …, κn), where κx is the 
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number of ballots where ax occurs in the first part. As such, UNV will track approval voting, and 

thus maximize the utility of the chosen voter.  

The Rae-Taylor theorem is a special case of this more general result. To see how, suppose n = 2, 

ρ(d00) = ρ(d11) = 0, 0 < ρ(d01) < 1, and ρ(d10) = 1 - ρ(d01). These are the conditions of the Rae-

Taylor theorem. Our generalized theorem states that under these conditions, the chosen voter 

should select a1 when κ1 > κ2, a2 when κ1 < κ2, and either when κ1 = κ2. But this is exactly what 

the Rae-Taylor theorem specifies. ■                 

Theorem 3: A Solution to Condorcet’s Dilemma  

Outline 

 First we will provide some definitions to simplify exposition. This is followed by a 

statement of Theorem 3. The proof consists of five lemmas and the elaboration of three theo-

rems. Informally speaking: The first lemma demonstrates that for every voting system, there ex-

ists a set of background conditions, where the voting system will fail at least one of the four 

normative conditions (i.e. decisiveness, neutrality, majority aggregation, and epistemic condi-

tions); thus no voting system always satisfies the four normative conditions. The second lemma 

demonstrates that regardless of background conditions, every polychotomous voting system will 

fail at least one of the four normative conditions; thus no polychotomous voting system can ever 

satisfy all four normative conditions. The third, fourth, and fifth lemmas are used to demonstrate 

a conditional claim: If there exists a set of background conditions where the UNV voting system 

satisfies the four normative conditions, then the UNV voting system is the least restrictive voting 

system which possibly satisfies the four normative conditions. Finally, elaborating on two exist-

ing theorems (which we call the Condorcet Jury Theorem and Generalized Condorcet Jury Theo-

rem), we easily demonstrate thru a corollary (which we call the Generalized Arrovian Condorcet 
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Jury Theorem), that there exist background conditions under which the UNV voting system satis-

fies the four normative conditions. Thus, UNV is the least restrictive voting system which can 

possibly satisfy the four normative conditions. After the proof is completed, there is an informal 

discussion of a possible normative objection to Theorem 3.   

Definitions 

 A polychotomous profile is a profile which contains a polychotomous ballot. A polychot-

omous profile domain is a profile domain which contains a polychotomous profile. A polychoto-

mous SWF is a SWF which has a polychotomous profile domain. A polychotomous voting system 

is a voting system which has a polychotomous SWF.  

A non-polychotomous profile is a profile which contains no polychotomous ballot. A 

non-polychotomous profile domain is a profile domain which contains no polychotomous profile. 

A non-polychotomous SWF is a SWF which does not have a polychotomous profile domain. A 

non-polychotomous voting system is a voting system which has no polychotomous SWF. 

The UNV profile domain (for a given (A, V)) contains no polychotomous profiles but con-

tains every non-polychotomous profile (possible given (A, V)).  

The Four Normative Conditions 

 The four normative conditions are decisiveness, neutrality, epistemic, and majority ag-

gregation conditions. The first two have been defined previously. We define the latter two here. 

Epistemic Voting System (epistemic): A voting system satisfies the epistemic condition if every 

one of its SWFs satisfies the epistemic condition. A SWF f satisfies the epistemic condition if 

there exists a set of background conditions where: (For every ax and ay in A and every p in the 

profile domain of f, it is the case that f(p) has ax ≻p ay iff the likelihood of ax in fact being true is 

greater than the likelihood of ay in fact being true. For every ax and ay in A and every p in the 



 Electronic copy available at: https://ssrn.com/abstract=3239621 

39 
 

profile domain of f, it is the case that f(p) has ay ≻p ax iff the likelihood of ay in fact being true is 

greater than the likelihood of ax in fact being true. For every ax and ay in A and every p in the 

profile domain of f, it is the case that f(p) has ax ~p ay iff the likelihood of ax in fact being true is 

equal to the likelihood of ay in fact being true.)  

Majority Aggregation Condition: A SWF satisfies the majority aggregation condition iff it uses 

the majority aggregation procedure. A voting system satisfies the majority aggregation condition 

iff every SWF of that voting system uses the majority aggregation procedure.  

Least Restrictive 

Given a fixed (A, V), Let f be any SWF which satisfies the decisiveness, neutrality, ma-

jority aggregation, and epistemic normative conditions. Let fʹ be a particular such f, and f* be any 

f (where f* ≠ fʹ). If it is the case for every f* that the profile domain of f* is a proper subset of the 

profile domain of fʹ, then fʹ is the least restrictive SWF which satisfies the four normative condi-

tions. If a voting system uses the least restrictive SWF on every possible (A, V) given (A, V), 

then such a voting system is the least restrictive voting system.   

Statement of Theorem 3 

 Under appropriate background conditions, every voting system will fail at least one of the 

four normative conditions (i.e. decisiveness, neutrality, majority aggregation, and epistemic). 

Regardless of background conditions, every polychotomous voting system will always fail at 

least one of the four normative conditions. There exists some set of background conditions, 

where UNV satisfies the four normative conditions. UNV is the unique least restrictive voting 

system which can possibly satisfy the four normative conditions.        

Statement of Lemma 3.1 

 No voting system always satisfies all four normative conditions. 
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Proof of Lemma 3.1 

 Assume each alternative is in exactly one of two states: true or not true. Assume each 

voter has a probability π = 0 of correctly determining the state of any given alternative. Assume a 

voter prefers an alternative she believes is true over any alternative she believes is not true. As-

sume a voter always honestly expresses her preferences on her ballot. Under such background 

conditions, every voting system will either fail the epistemic or majority aggregation conditions. 

■ 

Discussion of Lemma 3.1 

 Given there is no voting system which can always satisfy all four normative conditions, 

our search will turn to identifying voting systems which can satisfy the four normative conditions 

(under appropriate background conditions), and to those that can never satisfy the four normative 

conditions (regardless of the background conditions). In this vein, we first turn our attention to 

polychotomous voting systems. 

Statement of Lemma 3.2 

 Regardless of the background conditions, every polychotomous voting system will fail at 

least one of the four normative conditions. 

Proof of Lemma 3.2 

 The epistemic voting system and majority aggregation conditions require that every 

SWF, used by the voting system, use the majority aggregation procedure on every profile in the 

profile domain. But Theorem 1 showed there exists no polychotomous voting system, which is 

decisive and neutral and that always uses the majority aggregation procedure. Thus, a polychot-

omous voting system is always doomed to fail at least one of the four normative conditions. ■  

Discussion of Lemma 3.2 



 Electronic copy available at: https://ssrn.com/abstract=3239621 

41 
 

 Given no polychotomous voting system can ever satisfy all four conditions, regardless of 

the background conditions, we turn our attention to non-polychotomous voting systems. 

Statement of Lemma 3.3 

 Every logically possible non-polychotomous profile domain (given (A, V)) is a subset of 

the profiles belonging to the UNV profile domain (on that given (A, V)). (Proof follows from the 

definition of the UNV profile domain.) 

Statement of Lemma 3.4 

 For each profile domain, there is exactly one SWF which uses the majority aggregation 

procedure. Thus, if a profile domain belongs to a SWF (which belongs to a voting system, which 

satisfies the four normative conditions given a particular set of background conditions), that 

SWF is the unique SWF which satisfies those four normative conditions on that profile domain 

(given that particular set of background conditions).  

Proof of Lemma 3.4  

 Roughly speaking, a SWF is nothing more than a profile domain and aggregation proce-

dure. Once a profile domain is specified and the aggregation procedure is specified, that SWF is 

specified also. Note, the majority aggregation condition on voting systems requires every SWF 

of the voting system to use the majority aggregation procedure. Thus, if a profile domain is used 

by an SWF, which is used by a voting system, which satisfies the four normative conditions (on 

an appropriate set of background conditions), that SWF must be the unique SWF on that profile 

domain which uses the majority aggregation procedure. 

Statement of Lemma 3.5 
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 If the UNV system satisfies the four normative conditions (given a particular set of back-

ground conditions), then UNV is the least restrictive voting system which can possibly satisfy 

the four normative conditions. 

Proof of Lemma 3.5  

 First note, by definition, every SWF of the UNV voting system uses the UNV profile 

domain, and the majority aggregation procedure. Because polychotomous voting systems will 

always fail at least one of the four normative conditions (Lemma 3.2), it follows from Lemmas 

3.3 and 3.4 that if UNV system satisfies the four normative definitions on a particular set of 

background conditions, then it is the least restrictive voting system which can do so. ■ 

Discussion of Lemma 3.5 & the Setup for the Rest of the Proof 

 What remains to be demonstrated is that UNV, under particular background conditions, 

satisfies the four conditions. That proof is done in three steps. First, we state the original Con-

dorcet jury theorem to demonstrate in fact, that we are generalizing this original version. Second, 

we generalize the Condorcet jury theorem to multiple alternatives using an existing generaliza-

tion that uses approval voting. We call this the Generalized Condorcet Jury Theorem. Third, be-

cause approval voting is technically non-Arrovian, we translate the generalization with approval 

voting into a generalization with UNV. We call this generalization the Generalized Arrovian 

Condorcet Jury Theorem. Because the background conditions for the Generalized Arrovian Con-

dorcet Jury Theorem are background conditions under which the four normative conditions are 

satisfied, the UNV system is the least restrictive voting system which can possibly satisfy all four 

normative conditions.  

Condorcet Jury Theorem 

Condorcet Jury Theorem Background Conditions 
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Suppose there is exactly one alternative, ax, which is in exactly one of two states: true or 

not true. Suppose there are m voters. Each voter has the same probability, π, where 1/2 < π < 1, 

of correctly determining the state of ax. Each voter’s determination is mutually independent of 

the other m – 1 determinations. When a voter votes, she honestly states her determination on ax.  

Statement of Condorcet’s Jury Theorem 

If the Condorcet Jury Theorem Background Conditions are fulfilled, then the following is 

true: If more voters believe ax is true than believe it is not true, then it is more likely the case that 

ax is true in fact than that ax is not true in fact. If more voters believe ax is not true than believe it 

is true, then it is more likely the case that ax is not true in fact than that ax is true in fact. If an 

equal number of voters believe ax is true as believe it is not true, then the likelihood that it is in 

fact the case that ax is true is equal to the likelihood of the case that ax is in fact not true.   

Generalized Condorcet Jury Theorem 

Generalized Condorcet Jury Theorem Background Conditions 

Suppose there are n alternatives, each of which is in exactly one of two states: true or not 

true. Suppose there are m voters. Each voter has the same probability, 1/2 < π < 1, of correctly 

determining the state of any given alternative.22 For any voter, say vi, and for any alternative, say 

ax, the determination vi makes on ax is mutually independent of the other mn – 1 determinations. 

When a voter votes, every voter on every alternative honestly states her determination. 

Statement of the Generalized Condorcet Jury Theorem 

If the Generalized Condorcet Jury Theorem Background Conditions are fulfilled, then the 

following is true: For any ax and any ay, if more voters believe ax is true than believe ay is true, 

then it is more likely the case that ax is in fact true than that ay is in fact true. For any ax and any 

                                                           
22 In other words, there are m voters, each making n determinations. Let πix be the probability that voter i correctly 

determines the state of alternative x, and similarly πjy for voter j on alternative y. For any vi and vj, and for any ax and 

ay, πix = πjy = π, where 1/2 < π < 1.     
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ay, if more voters believe ay is true than believe ax is true, then it is more likely the case that ay is 

in fact true than that ax is in fact true. If an equal number of voters believe ax is true as believe ay 

is true, then the likelihood that it is in fact the case that ax is true is equal to the likelihood of the 

case that ay is in fact true.  

Proof of the Generalized Condorcet Jury Theorem 

 Given the background conditions of the Condorcet Jury Theorem or the Generalized 

Condorcet Jury Theorem, suppose k voters, where 0 ≤ k ≤ m, believe ax is true. If such is the 

case, then we know that the likelihood that ax is in fact true is equal to:  

Eq. 1: (𝑚
𝑘

)[𝜋𝑘(1 − 𝜋)𝑚−𝑘] / ([(𝑚
𝑘

)[𝜋𝑘(1 − 𝜋)𝑚−𝑘] +  (𝑚
𝑘

)[𝜋𝑚−𝑘(1 − 𝜋)𝑘])  

Therefore, given the Generalized Condorcet Jury Theorem Background Conditions, 

where k voters believe ax is true, and l voters, where 0 ≤ l < k, believe ay is true, ax has a greater 

likelihood of being in fact true than ay if: 

Eq. 2: (𝑚
𝑘

)[𝜋𝑘(1 − 𝜋)𝑚−𝑘] / ([(𝑚
𝑘

)[𝜋𝑘(1 − 𝜋)𝑚−𝑘] +  (𝑚
𝑘

)[𝜋𝑚−𝑘(1 − 𝜋)𝑘]) > 

(𝑚
𝑙

)[𝜋𝑙(1 − 𝜋)𝑚−𝑙] / ([(𝑚
𝑙

)[𝜋𝑙(1 − 𝜋)𝑚−𝑙] +  (𝑚
𝑙

)[𝜋𝑚−𝑙(1 − 𝜋)𝑙])   

 Using algebra to solve Eq. 2, we find that Eq. 2 is only true if π > 1/2. Thus, we can 

demonstrate that if more voters believe ax is true than believe ay is true, ax is more likely in fact 

true than ay given the background conditions of the Generalized Condorcet Jury Theorem. Simi-

larly, we can show that if an equal number of voters believes ax is true as believe ay is true, then 

ax and ay have the same likelihood of in fact being true, given the background conditions of the 

Generalized Condorcet Jury Theorem. ■ 

Generalized Arrovian Condorcet Jury Theorem 

Generalized Arrovian Condorcet Jury Theorem Background Conditions 
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Suppose there are n alternatives, each of which is in exactly one of two states: true or not 

true. Suppose there are m voters. Each voter has the same probability, 1/2 < π < 1, of correctly 

determining the state of any given alternative.23 For any voter, say vi, and for any alternative, say 

ax, the determination vi makes on ax is mutually independent of the other mn – 1 determinations. 

For any vi and for any ax and ay, the following are true: If vi believes both ax and ay are true or 

that both are not true, then ax ~i ay. If vi believes ax is true but ay is not true, then ax ≻i ay. When a 

voter votes, every voters submits a ballot which honestly reflects her preferences. Thus, given 

the background conditions of the Generalized Arrovian Condorcet Jury Theorem, each voter will 

submit some non-polychotomous ballot.   

Statement of the Generalized Arrovian Condorcet Jury Theorem 

If the Generalized Arrovian Condorcet Jury Theorem Background Conditions are ful-

filled, then the following is true: For any ax and any ay in A, if UNV has ax ≻p ay, then it is more 

likely the case that ax is in fact true than that ay is in fact true. For any ax and any ay in A, if UNV 

has ay ≻p ax, then it is more likely the case that ay is in fact true than that ax is in fact true. For 

any ax and any ay in A, if UNV has ax ~p ay, then the likelihood that it is the case that ax is in fact 

true is equal to the likelihood of the case that ay is in fact true.  

Proof of the Generalized Arrovian Condorcet Jury Theorem 

 The proof of the Generalized Arrovian Condorcet Jury Theorem easily follows from the 

proof of the Generalized Condorcet Jury Theorem. Thus, there exist background conditions un-

der which UNV satisfies the four normative conditions, and due to Lemma 3.5 UNV is the 

unique least restrictive voting system to satisfy the four normative conditions. ■ 

Discussion 

                                                           
23 In other words, there are m voters, each making n determinations. Let πix be the probability that voter i correctly 

determines the state of alternative x, and similarly πjy for voter j on alternative y. For any vi and vj, and for any ax and 

ay, πix = πjy = π, where 1/2 < π < 1.     
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 We will informally discuss one potential objection to Theorem 3. Suppose the assertion is 

made that even if a polychotomous voting system fails at least one of the four normative condi-

tions, this may not matter because of the way that voters vote, normative condition violations 

never occur in practice. For example, suppose π = 1 for all mn determinations, voters prefer true 

alternatives over not-true alternatives, and sincerely express their preferences on their ballots; 

further suppose a polychotomous voting system uses the unrestricted profile domain and majori-

ty aggregation procedure for every SWF. Clearly, such a voting system will technically be inde-

cisive for any profile which leads to an intransitive majority cycle, but given voters will never 

vote in a way to produce such a cycle, it does not practically matter. 

 The reply to this kind of objection would be to introduce a non-zero probability condi-

tion, which requires that every profile in the profile domain have a non-zero probability of occur-

ring. As such, trouble causing profiles will have to occur, which means normative condition vio-

lations are still practically possible. Even if the probability of such normative condition viola-

tions are near zero, if the decision being made is important enough, the non-zero probability of 

failure will still matter. It would take a super idealized society of voters to overcome the non-

zero probability condition.      
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