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Abstract

The use of data retrieved from the Internet enables unprecedented precision for political analysis, but it
also introduces specific ethical and legal challenges to share and replicate results. As personal communications
tend to take place over the Internet, researchers are increasingly required to prove compliance with an also
increasingly restrictive and intrincate body of privacy law such as the GDPR. In addition to legal compliance,
researchers need to put safeguards in place to prevent harm caused by identity disclosures from their datasets.
In addition to economic and moral damage, a successful re-identification attack could lead to imprisonment,
torture or even life termination in the case of research datasets about subjects or groups on autocratic or violent
contexts.

In this paper we present the first results of a privacy-preserving system designed to enable safe sharing and
replication of statistical analysis computed from sensitive datasets. Our system is composed of three elements, all
of them made available to the scientific community thanks to an effort lead by the Institute for Quantitative Social
Science at Harvard University. First, we use differential privacy, a privacy-preserving technique that avoids
re-identification while preserving the statistical properties of the sensitive dataset. Second, we use the Dataverse
open source software to share the resulting statistics consistently with FAIR principles, including automatic
citation, persistent identifiers and data provenance. Third, we apply a simplified Datatags implementation to
enable access to any sensitive dataset required for replication.

We illustrate the utility of our approach reproducing a remote-sensing technique that retrieves the most
precise statistics of Internet connectivity available, and making them available for the scientific community. We
show that our privacy-preserving estimates match the accuracy of the original method up to the 5th decimal of
the correlation coefficients when compared with country-year official statistics worldwide from 2004 to 2012.
We conduct an aditional validation to check the accuracy below the country level estimating Internet connectivity
for the 31 provinces of China for the same period, and we find a 0.802 correlation coefficient with the available
official statistics. We make the resulting data available for the scientific community using the Harvard University
Dataverse. We implement a differential privacy algorithm which is made available through an open source library
written in R to facilitate the integration or our method in a conventional statistical analysis workflow.

*Draft, not for circulation. Prepared for the panel "Education and Replication in Political Methodology" at the 2019 American Political
Science Association (APSA) Annual Meeting, held August 29 - September 1 in Washington, DC (US)..

†Corresponding author. Contact: <susobaleato@iq.harvard.edu>



1 Privacy Implications of Internet Data

The mass adoption of the Internet is popularizing the use of that infrastructure as a tool for scientific research. This

trend is prominent in the study of political phenomena, as the increasing availability of behavioral data is opening

the way for previously unfeasible research. Examples of this trend can be recognised in recent studies looking at

political censorship (King, Pan, and Roberts, 2013), to estimate connectivity statistics (Baleato et al., 2015), to

evaluate digital discrimination in ethnic groups (Weidmann et al., 2016), to estimate ideology from social media

(Barberá, 2015), to monitor network shutdowns in contexts of political unrest (Dainotti et al., 2011), or to evaluate

the incidence of denial of service attacks during contentious periods (Lutscher et al., 2018). Initiatives such as the

Social Science One partnership (King and Persily, 2018) to open social media data to researchers illustrates the

value of Internet data, and suggest that this trend can be expected to continue growing up.

While academic scholarship has showed the utility of Internet data, it has started to outline its limitations

as well. For example, problems of representativity have been identified that affect much of Twitter scholarship

(Pfeffer, Mayer, and Morstatter, 2018), amplifying previously identified issues on bias and reliability of the sample

(O’Neil, 2017; Lazer et al., 2014). However, the major challenge that researchers need to solve is not a technical,

but a legal and ethical one: the need to comply with privacy law, and to prevent the research to harm the integrity

of the involved individuals by disclosing their identity.

While ethical concerns are traditionally associated with experimental research, the capacity of behavioral data

to reveal the identity of individuals extends the privacy issue to observational studies, also to those applying

anonymisation techniques to their datasets. For example, research using mobile phone and credit card databases

showed that a sample of just four spatio-temporal points is sufficient to identify 90-95% of the involved individuals

(Montjoye, Radaelli, et al., 2015; Montjoye, Hidalgo, et al., 2013). The growing availability of behavioral data

increases the relevance of the issue, because the combination of different datasets increases the probability of

singling out, as illustrated in a study combining anonymised data about preferences of Netflix users and the IMDB

public database of film evaluations (Narayanan and Shmatikov, 2006). The literature on re-identification attacks

is not short of other examples including health records, discharge data, genetic samples and others. The growing

availability of data also increases the accuracy of the resulting profiles in terms of political ideology, religious

beliefs, ethnicity, health habits, or sexual preferences. In addition to moral or economic consequences, individuals

can be imprisoned or even terminated when the identity disclosure takes place in contexts of political violence or

authoritarian rule.

2 A Privacy-Preserving and Replicable Approach

As the case of the European Union’s General Data Protection Regulation exemplifies, legal requirements to work

with identifiable data tend to be more strict. Regulatory safeguards affect the capacity of researchers to retrieve,

store and process Internet data; and also to share it with other researchers to allow the replication of their research

(King, 2011; King, 2003; King, 1995). In order to conduct research on sensitive data, researchers need a privacy

preserving approach capable to preserve the statistical power of privacy-less analysis, to provide quantifiable

evidence about the privacy safeguards, and whose computational complexity allows for integration in a conventional
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statistical analysis workflow. We believe that differential privacy can satisfy the privacy requirements of researchers

working with Internet data, using the implementation proposed by the Harvard/ MIT Privacy Tools research group1

(Nissim et al., 2017; Gaboardi et al., 2016; Dwork, McSherry, et al., 2011; Dwork, Roth, et al., 2014).

Conventional privacy-preserving mechanisms set the focus on the dataset limiting its access -for example, lo-

cating the data in a bunker with physically access only-, or modifying the data introducing fake records or removing

identifying fields such as name or social security number. While those methods can work in some circumstances

they are limited by the administrative costs, and by their vulnerability to data breaches and re-identification attacks.

Instead, differential privacy keeps the dataset untouched and applies the preserving mechanism at the statistical

computation time, on the basis of a cryptography paradigm that avoids inferring the identity of an individual from

the analysis of the released statistics.

Standard quantitative analysis produce a single set of statistics -eg mean or regression coefficients- that is a

raw representation of the dataset or the computed model. With differential privacy, the researcher sets a privacy

protection parameter that defines the distance between the values of the raw analysis, and those released after the

privacy-preserving computation. This parameter, referred in the literature by epsilon, can be conceptualized as

the probability between 0 and 1 of inferring the raw data from the released one. More precisely, per definition in

Dwork, Roth, et al., 2014 et ϵ, δ > 0 be numeric parameters, D be the set of databases, let R be the set of possible

outputs. A program M : D → D(R) satisfies ϵ, δ differential privacy if

Let ϵ be a numeric parameter, D be the set of databases, R be the set of possible ootputs. A program M : D →
D(R) satisfies ϵ differential privacy if:

Pr(M(d)) ∈ S ⩽ eϵPr(M(d′)) ∈ S (1)

for all pairs of adjacent databases d, d′ ∈ D such that dΦd′ (adjacent, i.e.: identical except for one record), and

for every subset of outputs S ⊆ R.

In addition to the epsilon parameter, the research can tailor the algorithm to match the analytical needs, and

apply different mechanisms, allowing for quantitative assessment of the privacy safeguards to facilitate the ethical

and legal determination of the research.

The use of differential privacy can help to overcome many of the ethical challenges involved in the use of

Internet data for research, but it does not remove other concerns such as security or intellectual property. With or

without differential privacy, a standard workflow involves the need to to lawfully and safely retrieve and deposit the

data, run the computations, and share the resulting statistics. The latter is specially relevant for scientific research,

as code and data needs to be made available for reviewers to replicate results, and the shared data needs to be

properly referenced to facilitate reuse and citation by other researchers. In addition to privacy, replication and

reuse of Internet data needs to address the intellectual property rights implications as well. For example, contents

from social media may be freely retrieved but not redistributed, and auxiliary datasets required for the analysis

-such as health records or geolocation databases- may be purchased for research, but cannot be made available to

third-parties. In order to facilitate the replication and reuse of privacy preserved analysis, we propose to combine
1http://privacytools.seas.harvard.edu/
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the use of differential privacy with Datatags framework in the implementation proposed by the Harvard University

Dataverse.

Fig 1: The Datatags System. Sweeney, Crosas and Sinai (2015).

Dataverse is an Open source research data repos-

itory software2, developed by Harvard University In-

stitute for Quantitative Social Science, that facilitates

data reuse and replication consistently with the FAIR

principles for data management (Wilkinson et al., 2016;

Merc?? Crosas et al., 2015; Mercè Crosas, 2013;

Mercè Crosas, 2011; King, 2007). For each deposited

dataset, the software generates a standardized cita-

tion linked to a persistent identifier, that is updated

to automatically keep track of any changes made to

the included files (Altman and Mercè Crosas, 2013;

Altman and King, 2007; Altman, 2008). The software allows researchers to customise their data distribution

needs allowing the use of custom license or data use agreement, and requiring authentication to download data if

needed. The current support for customised data access levels is evolving to implement the more comprehensive

Datatags system, a taxonomy that identifies the security features and the access credentials required to share the

different types sensitive datasets (Sweeney, M. Crosas, and Bar-Sinai, 2015).

3 Internet Connectivity Statistics

The utilization of the Internet as a research tool generally involves a data retrieval process which makes use of

techniques primarily developed for engineering purposes, as exemplified by the extensive use of the API of social

media platforms to retrieve their data3. Another prominent example is the analysis of the Internet routing traffic

channeled through the Border Gateway Protocol (BGP). When a message is sent over the Internet, it travels the

network being relayed by the routers that link the source and destination devices. At each step, the receiving router

calculates the shortest remaining path and relays the message to the corresponding router, establishing a relaying

sequence which is repeated until the package eventually arrives to destination. The BGP takes part in that process

standardizing the communication between the routers that connect the segments of the Internet addressing space

grouped by Internet based on Autonomous Systems (ASes) (Rekhter and Li, 2006).

The analysis of BGP data is useful because it provides a global view of the Internet connectivity, and a very

precise one as it allows for highly disaggregated spatio-temporal analysis. This technique has been successfully

used to detect Internet shutdowns during times of political unrest (Dainotti et al., 2011), to improve the spatio-

temporal precision of Internet connectivity statistics (Baleato et al., 2015), and to prove the discrimination of

politically excluded ethnic groups in the access to the Internet (Weidmann et al., 2016). As much of the observed

traffic comes from the digital interaction of connected individuals, researchers working with BGP data need to
2http://dataverse.org/
3An Application Programming Interface (API) is an abstraction of a computer system that standardizes the input/ output operations to

facilitate its programming. This standardizatio includes the process to request and retrieve data, a feature used by researchers to acquire
data, remarkably from social media platforms such as Twitter.
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ensure compliance with privacy law and provide safeguards to their ethical and institutional review boards. The

privacy risks increase together with the sampling precision, which can go beyond standard demographic protection,

such as the census tract in the US, and is exacerbated in areas with less population and lower industrial development,

especially in contexts involving authoritarian regimes or political violence.

The estimation of Internet connectivity statistics is a particularly useful application of BGP analysis which

would require a privacy preserving approach to fully harness its utility. As the Internet becomes the backbone of

digitalisation, accurate descriptions of the infrastructure are required to enable sound analysis on digitally mediated

phenomena. The limitations of the official statistics on Internet have hampered the capacity of social science

to develop highly disaggregated empirical analysis, because the provided precision is limited to country-year

observations, and because the methodology used to estimate the statistics is subject to different bias sources.

The analysis of BGP data can help in solving those limitations, producing statistics on Internet adoption inside

countries, and with temporal precision below the monthly frequency. Instead of relying on the reports provided by

telecommunication regulators, the remote-sensing approach relies on direct observation of the global Internet data

flow. This allows measuring digitalisation also in areas where official statistics are not available or data cannot be

retrieved, such as in the case of authoritarian regimes or territories experiencing long-term political violence.

In order to overcome the legal and ethical challenges of BGP-based analysis, we improve the original estimation

method (Baleato et al., 2015) applying a differential privacy algorithm implemented in R (Gaboardi et al., 2016).

In order to evaluate the accuracy of the privacy-preserving statistics, we run the validation test proposed in the

original paper comparing the computed estimates with official statistics at country-level between 2006 and 2010,

and measure the error between the privacy estimates and the original ones. For robustness, we conduct a sensitivity

analysis running the test for 15 different epsilon values, repeating the analysis 21 times to remove issues of

randomness quality. As Figure 2 shows, our privacy-preserving statistics match the accuracy of the conventional

analysis up to the 5th decimal of the Pearson correlation coefficients under the most restrictive configurations.

Fig. 2: Error between raw and privacy-preserving statistics for different epsilons, in 21 simulations.

Once the privacy-preserving safeguards are in

place, it is safer to publish the resulting analysis. We

show how to share the data for reuse and replication

deploying the Harvard University Internet Connectivity

Statistics (ICS) Dataverse 4 consistently with the FAIR

principles for Open Science. In order to use the latest

stable version of the Dataverse code, we restrict our

Datatags implementation to a simplified version with

two permission levels only to allow for public access

to the analysis, and restricted access to the source

sensitive data for replication purposes. Next steps

include refactoring of the R code; global sensitivity analysis automation; additional country level validations. We

aim to extend the coverage of the dataset through Open Science collaboration with researchers interested in the

connectivity of additional administrative, economic and ethno-cultural areas.
4https://dataverse.harvard.edu/dataverse/ics
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4 Conclusion

We have proposed a privacy-preserving approach based on differential privacy, the Dataverse software and the

Datatags system to address the ethical and legal challenges of using the Internet as a research tool. We apply our

approach to a BGP-based Internet connectivity estimation method, and we compare the accuracy of our privacy-

preserving statistics with the original ones, showing a match up to the 5th decimal under the most strict conditions.

We share the data deploying the Harvard University Internet Connectivity Statistics Dataverse, and we call for

collaborations to validate and improve our data, and to use it for Open Science research.
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