Polarization and Campaign Dynamics

Richard Johnston
University of British Columbia
richard.johnston@ubc.ca

Sarah Lachance
University of Toronto
sarah.lachance@mail.utoronto.ca

APSA 2022
• Volatility has shrunk in US elections, both within and between campaigns – polarization the key

• Similar in Canada? Incumbent shares:
• Has affective polarization increased?

• Does affective polarization decrease campaign volatility?

• Complications:

 • Multi-party system
 • Some dyads have polarized, others have depolarized
 • Shifting menu of parties
 • coordination imperatives between adjacent parties

 • Electorate is segmented: Quebec v rest of Canada (ROC)
 • Different menu of parties
 • QC: additional dimension -- “National Question”
Hypotheses:

1. As polarization increases, movement within ideological blocks decreases
 Flattening the dimensionality confines movement to adjacent parties ln the single dominant dimension – hinders performance judgments

2. As polarization increases, movement within ideological blocks increases
 Performance judgments confined within blocks

3. As polarization increases, electoral coordination within blocks increases
 FPP – strategic imperative to consolidate the vote
• Polarization indicator should include
 • All (non-minuscul) parties
 • Non-partisans as well as partisans

• Volatility indicators should separate movement *between* ‘blocks’ from movement *within* ‘blocks’.

• Consolidation indicator should reflect number and relative size of parties within a block
Polarization indicator

• Feeling thermometer scores for parties

• Indexed by spread (Wagner 2021) – sum of squared deviations from average rating
 • Average and deviations weighted for vote shares in the current election
 • Premium on feelings toward larger parties
Volatility indicators

• Based on Volatility index (Pedersen 1979):

• Volatility for the system = \textit{Total Volatility} = TV (Bartolini and Mair 1990 [2007])

• \textit{Block Volatility} = BV.

• \textit{WBV} = TV - BV
Consolidation

• Effective number of parties (Laakso & Taagepera 1979)
 \[\frac{1}{1 - HH \text{ index}} \]

• Yields fractional number of “parties”

• Smaller value = more coordination

• Calculations within each block
Identifying the end points

True RCS (Johnston & Brady 2002)

1. Remove earliest days
 • Clearance of sample

2. Smoothing of vote intentions
 • Remove sampling error
 • Method: Generalized additive model (GAM) with cubic splines
 • Estimation by cross-validation

3. Volatility and consolidation: difference between smoothed share of vote intentions at the end of the campaign and at the beginning
Consolidation

Quebec

ROC

ENP growth / shrinkage

Election year

Graphs by roc

Consolidation
Spread and Block Volatility

Graphs by roc
Spread and Within-Block Volatility

Graphs by roc
Spread and Left Consolidation

-rographs by roc
Discussion

• Dimensionality
 • ROC: may have shrunk but still not unidimensional
 • QC: may actually have increased – Bloc v Liberals + expansion of L-R

• Liberals still occupy the centre – scope for opportunism (e.g. 90s)

• Party splits and fusion – PID not a constant, esp on the right

• Compensation voting?

• Strategic manoeuvre more between than within campaigns
 • context dependency
 • cf 1993 & 2011
Extras
In the US, polarization has made elections less variable, including in campaigns:
Volatility indicators

• Volatility index (Pedersen 1973, 1983):
 • Where Volatility for party \(i \) \((V_i) = P_{it} - P_{it(0)}\), where \(P_{it} \) is the \(i^{th} \) party’s share at \(t \).
 • Volatility for the system = \(\sum_{i} |V_i| \). Call this Total Volatility = TV (Bartolini and Mair 1990 [2007])

• Where parties grouped in blocks:
 • Block Volatility = \(\frac{|V_a + V_b + V_c| + |V_d + V_e|}{2} \), by way of illustration, where \(V_a, V_b, V_c \) are one block and \(V_d \) and \(V_e \), the other block in a system with two blocks.

• Call Within-Bloc Volatility WBV.
 • \(TV = BV + WBV \)