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Abstract

Previous research has found that political traits have some degree of genetic basis, but researchers

have had less success unpacking the relationship between genes and political behavior. We propose an

approach for examining the relationship between genetic predispositions and political variables that

can overcome many of the limitations of previous research on the genetic underpinnings of political

behavior: polygenic indices (PGIs). PGIs are DNA-based individual-level variables that capture the

genetic propensity to exhibit a given trait. We begin by outlining how PGIs are derived, how they

can be utilized in conventional regression-based research, and how results should be interpreted.

We then provide proof of concept illustrating the fruitfulness of the PGI approach by examining

the relationship between PGIs for psychological and health-related traits and various measures of

political participation. Using data on over 50,000 individuals in four samples from the U.S. and

Sweden, we find that PGIs for 10 different health and psychological traits significantly predict four

measures of political participation. We also conduct within-family analyses, which suggest that a

fair amount of the relationship between the molecular genetic markers and political participation

is causal in origin. We conclude by outlining several ideas and providing empirical examples for

researchers who may be interested in building on the PGI approach used in this paper.

Introduction

“Why do people think and act politically in the manner they do?” With this fundamental question in

political science, Alford, Funk and Hibbing opened their widely debated 2005 article in the American

Political Science Review. The question is of course deceptively simple, but the answer provided by

the authors was, at least at the time, surprising to large parts of the discipline. Alford, Funk and

Hibbing (2005) showed that genetics play an important role in shaping political attitudes and ideologies

among individuals. The attention the study garnered both inside and outside academia was instant and

significant, and the article quickly became the most downloaded in APSR history and heralded as among

“the most important articles the APSR has ever published” (Sigelman, 2006, 172).
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In the wake of the Alford et al. study, a new subfield combining the lessons from behavioral genetics,

psychology, and political science emerged. Up until that point, the idea that political predispositions

were linked to biological factors had been more or less absent in studies on the determinants of political

attitudes and behavior.

During the last decade and a half, researchers active within this subfield have produced a growing

number of studies demonstrating that political traits are, to some degree, genetically heritable. The

bulk of these studies are based on the classical twin design, in which differences in concordance between

monozygotic (identical) and dizygotic (fraternal) twins are used to trace out the share of different traits

that can be accounted for by genetic and environmental factors, respectively. Such studies have shown

sizeable heritability estimates for political orientation and ideology (Alford, Funk and Hibbing, 2005; Bell,

Schermer and Vernon, 2009; Hatemi et al., 2014; Oskarsson et al., 2015), strength of party identification

(Hatemi et al., 2009; Settle, Dawes and Fowler, 2009), and political participation (Fowler, Baker and

Dawes, 2008; Klemmensen et al., 2012; Dawes et al., 2014, 2015).1

All of the above-mentioned studies have been criticized due to the assumptions that are necessary

to estimate the heritability component in the classical twin design (see, e.g., Beckwith and Morris 2008;

Charney 2008). Above all, the equal environments assumption, stating that identical and fraternal twin

pairs experience equivalent trait-relevant environments, has been questioned. In response to this, a

few studies have utilized alternative research designs, such as using extended families (Hatemi et al.,

2010; Kornadt et al., 2018; Kandler, Bleidorn and Reimann, 2012), adoptees (Cesarini, Johannesson and

Oskarsson, 2014; Oskarsson, Dawes and Lindgren, 2018; Oskarsson et al., 2022), and molecular genetic

data (Benjamin et al., 2012) to study the genetic heritability of both political orientations and political

participation and their findings largely corroborate those from twin studies. Thus, there is substantial

evidence that political attitudes and behavior are partly genetically transmitted.

Despite providing a substantial challenge to conventional models of the formation of political attitudes

and behavior, the findings from this subfield have yet to be fully integrated into mainstream political

science research. One reason for this may be that while studies using different samples and measures

consistently find that a moderate to large share of the variance in political traits can be accounted for

by genetic factors, researchers have had less success in explaining how genetic factors are related to

political attitudes and behavior. For instance, some studies have tested whether specific genes, so called

“candidate genes,” are associated with political traits (Fowler and Dawes, 2008; Dawes and Fowler, 2009;

Settle et al., 2010; Fowler and Dawes, 2013; Deppe et al., 2013) in the hope that their functions can help

reveal how they may influence political traits. However, the growing realization that most, if not all,

complex human traits are influenced by a very large set of genetic variants, each with very small effect

sizes (Chabris et al., 2015), has largely put a halt to such efforts (Charney and English, 2012; Fowler and

1Reviews of recent research on the genetic basis of political behaviors and attitudes have been conducted by Hatemi

and McDermott (2016), Ksiazkiewicz and Friesen (2017), and Dawes and Weinschenk (2020).
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Dawes, 2013; Deppe et al., 2013). Some researchers have employed multivariate twin models to examine

the extent to which psychological traits can be traced back to the same genetic sources as political traits

(Dawes et al., 2014, 2015; Weinschenk and Dawes, 2017; Weinschenk et al., 2019). Here again, though,

researchers have encountered important limitations. For instance, it has been difficult to demonstrate

that psychological traits are causal mediators linking genes and political attitudes and behavior (see

Verhulst, Eaves and Hatemi 2012; Dawes et al. 2014; Rasmussen, Ludeke and Hjelmborg 2019). Thus,

despite the initial promise of work on the genetic underpinnings of political traits, the recent output of

empirical work has slowed considerably.

Another reason for the lack of integration is likely due to structural limitations related to research

on the genetic basis of political traits. For example, the type of data used in these studies, i.e., samples

of twins, adoptees, or genotyped individuals including information on relevant political traits, has been

somewhat limited. Moreover, it is often necessary to collaborate across disciplinary lines in order to access

relevant data. Further, to analyze such data, learning and mastering new and oftentimes unfamiliar

methodological skills is often required.

Finally, it is also important to note that researchers in the subfield, including the authors of this

paper, have largely failed, thus far, in clarifying the relevance of their findings for the larger political

science community in a convincing way. A common reaction when presenting research on the genetic

basis of political traits is one of polite skepticism. On the one hand, most political behavior researchers

admit that the evidence that genetics influence political attitudes and behaviors seems quite strong. On

the other hand, fewer are convinced that this research adds to our understanding of politics or that

the potential scientific payoff is worth the effort. Put differently, as social scientists we should study

social causes and since genetic differences per definition are not social causes, genes are somebody else’s

problem.

We argue that this pragmatic partitioning between social and genetic causes is at best untenable and

at worst harmful for our understanding of social phenomena. Our point of departure is instead that

any human behavior is the product of the presumably very complex interplay between genetic and past

and current environmental factors and that failing to account for either runs the risk of rendering our

conclusions about the factors we do consider flat out wrong. To reach a better understanding of the causes

(be those social or genetic) of individual differences in political behavior, we must take this interplay into

account. Against this background, our study has two main aims. First, we introduce a new approach

for examining the relationship between genetic predispositions and political traits that can overcome

many of the limitations of the previous lines of research discussed above. In short, we argue that the

integration of polygenic indices (PGIs) into conventional empirical models provides a way forward. As a

quick overview, a PGI for a given trait is a DNA-based predictor of the trait, calculated as a weighted

sum of an individual’s relevant genetic variants (Becker et al., 2021). Thus, rather than focusing on

the relationship between political participation and assumed genetic similarity (as in traditional twin or
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adoption studies), or a handful of specific genes (as in the candidate gene paradigm), the approach we

advocate for makes use of an individual-level measure of genetic propensity, summarizing the effect of a

large number of variants, that can be used in empirical frameworks already part of the existing political

science toolkit. Furthermore, the dramatically decreasing costs for genotyping individuals has led to a

rapid expansion in the number of datasets that contain the necessary type of data.

Our second aim is to provide a proof of concept illustrating the fruitfulness of the PGI approach.

More concretely, this study serves as an example of how PGIs can be used to improve our understanding

of a set of well-known and strong empirical relationships between, on the one hand, psychological and

health-related traits, and, on the other, different measures of political participation. Political scientists

have been increasingly interested in the link between health and psychological traits and political par-

ticipation. However, determining whether there is an underlying causal effect of these traits on political

outcomes is challenging. Above all, any psychological or health trait might be correlated with observ-

able and unobservable characteristics, including genetic and environmental factors, that independently

affect outcomes.2 Moreover, we can not rule out the risk of reverse causality such that the psychological

and health-related traits are partially determined by the act of political engagement. Instead of using

contemporary trait measures, we suggest a different approach. We use PGIs for the traits of interest

- that is, indices of genetic variants linked to different psychological and health traits - and study how

these predispositions affect political participation. There are two distinct advantages with this approach.

First, genes are fixed over the life cycle, precluding reverse causality issues. Second, we make use of the

fact that our data includes a large share of full siblings. Since genetic differences (and therefore differ-

ences in PGIs) between full siblings are random in accordance with Mendel’s first law, a within-family

PGI effect on an outcome can be given a causal interpretation.

To study these relationships, we make use of data from four samples across two national contexts (the

U.S. and Sweden). In addition to different measures of political participation such as self-reported and

validated voter turnout and engagement in various other political acts, these samples include ten PGIs

that capture the genetic propensity for traits related to health (e.g., depression and physical activity)

and various psychological attributes (e.g., cognitive ability and risk tolerance). To preview our findings,

we demonstrate that the ten PGIs constructed to capture genetic variation in different health-related

and psychological traits significantly predict our four measures of political participation. Moreover, we

report within-family analysis estimates suggesting that the psychological and health trait-linked genes

captured by the ten PGIs exert significant causal effects on political participation.

The rest of this paper proceeds in the following manner. In the next section, we provide an overview

of some of the important technicalities and interpretational issues around polygenic indices, which are

2Many studies in these areas have highlighted the genetic underpinnings of health and psychological traits. For example,

Mondak et al. (2010) note that “because personality is substantially rooted in biology, any effects of personality on political

behavior likely signal the mediated influence of biology” (106). Similarly, Pacheco and Fletcher (2015) point out that “health

may also be a potential mechanism by which genetic factors influence political behavior as health is inherited” (113).
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likely to be new to many social and political scientists. We then provide an overview of how the 10 traits

of interest in this paper have previously been related to political engagement. To be clear, previous

research on the relationship between health and psychological traits and political participation has not

focused on measuring genes related to these traits. Next, we describe our empirical framework, data,

and measures. We note that a pre-analysis plan for this paper was registered prior to us getting access

to the data or conducting any analyses.3 After we present the results of these analyses and discuss the

findings, we conclude by providing a host of suggestions and empirical examples for researchers who may

be interested in using and building on the framework discussed in this paper. The approach employed

here can be used to study a wide range of relationships of interest to political behavior scholars and

may be used in a variety of other interesting ways. For example, we discuss and provide some simple

illustrative examples on how PGIs can be used to further political socialization research and to study how

the effects of certain interventions vary by individual genetic endowments, or so-called gene-environment

interactions.

Polygenic Indices

As a first step, we need to establish a basic understanding of PGIs, how they are constructed, and how

results from analyses where they are used should be interpreted. In order to accomplish this, it is also

necessary to delve very briefly into human genetics.

The human genome, which is packed into the nucleus of each of our cells, consists of several long

strings (of deoxyribonucleic acid, or DNA), with a double helix structure, consisting of pairs (base pairs)

of nucleotides. Each string is called a chromosome, and every cell holds 23 pairs of these chromosomes,

such that there are two versions of each - one inherited from the mother and one from the father. At each

position (locus) on a chromosome, the nucleotide base pair will be one of two types (alleles): adenine

paired with thymine (i.e. AT), or cytosine paired with guanine (CG). For the vast majority of the loci

across the genome (approximately 99.9%), humans are identical. The remaining loci, therefore, make

up all of our genetic variation. Base pairs that differ between individuals are called single nucleotide

polymorphisms (henceforth SNPs, pronounced ‘snips’).4 The least/most common allele at a certain locus

(that is, AT or CG) in a population is referred to as the minor/major allele. In effect, each position on the

genome can have three different values: it will have the minor allele on neither of the two chromosomes

in a pair (0), on one of the chromosomes (1), or on both (2), meaning that a locus can come in three

different versions. Longer strings of base pairs (from a few hundred to a few million in a row) are what

3This paper is the composite of two separate pre-analysis plans. These were posted on the OSF website on April 14,

2021 and are available at the following links: https://osf.io/gnv9t/, and https://osf.io/vrd75/. Any deviations from,

or additions to, the pre-analysis plan that were deemed necessary and/or helpful are mentioned throughout.
4While the focus here is on SNPs, there are other types of variation as well – such as insertions or deletions of particular

segments of the genome, or copy-number repeats, where specific segments of the genome are repeated varying numbers of

times.
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forms a gene, i.e. the instructions for the cell to produce a particular protein. When a gene contains

SNPs, i.e. base pairs that differ between people, there are, in effect, different versions of the gene, that

may result in slightly different versions of the protein.

A PGI is an individual level measure that is intended to summarize at least part of an individual’s

genetic endowment that may predispose them to have a particular trait (which we will call the target

trait). In order to be able to construct a PGI for a target trait, we first need to know which SNPs should

be included, and how strongly each of these SNPs are associated with our target trait. This information

comes from a so-called genome-wide association study (henceforth GWAS) in which researchers separately

regress an outcome (or phenotype) of interest on the number of alleles (0, 1 or 2) subjects possess for each

genotyped SNP (typically in the hundreds of thousands to millions) using a very large sample. A SNP is

declared to be “genome-wide significant” if the p-value associated with its effect on the outcome is below

a stringent threshold, adjusted for multiple testing, which is typically p < 5 × 10−8. As an example,

a recent GWAS of educational attainment based on more than 3 million individuals found 3,952 SNPs

that were significantly associated with years of education (Okbay et al., 2022).

The summary information from the GWAS – the estimated effect of each genotyped SNP on the

outcome – is then used to construct a PGI in a new sample. The PGI is simply the coefficient-weighted

sum of the number of alleles an individual has for each SNP analyzed in the GWAS. More formally, the

PGI for individual i is defined as

PGIi =

K∑
k=1

β̂kXki (1)

where β̂k is the coefficient for SNP k, as estimated in the discovery sample in the GWAS, and Xki is the

number of alleles (0, 1 or 2) that individual i has for the same SNP. Typically, the resulting index will

then be standardized to have mean zero and standard deviation one.

The final PGI can now be used, much like any individual level quantitative variable, in a regression

framework as a measure of the individual’s genetic propensity for the trait in question. However, the

results of this regression must be carefully interpreted and it is important to be aware of what PGIs do

and do not capture, as well as under what circumstances the resulting estimates can be interpreted as

causal genetic effects.

When used in a cross-sectional design, the PGI may capture not only the causal genetic effects,

but also remaining population structure and genetic nurture. By population structure we mean the

confounding that stems from certain alleles simply being more common in segments of a population

that, for entirely unrelated reasons, differ on average on the outcome of interest. That is, if a population

is stratified into groups that are partially “separated” (i.e. not mating randomly across groups) due to

social, cultural or natural barriers, and the outcome in question is more prevalent in one of these strata for

non-genetic reasons, a GWAS would suggest that SNPs that happen to be more common in that group
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are correlated with the outcome. The problem of population stratification in cross-sectional designs

can be somewhat ameliorated by the standard practice of restricting the analyses to people who have

similar genetic ancestry and including the top principal components of the genetic-relatedness matrix

that capture broad patterns of genetic similarity produced by human demographic history (Price et al.,

2006). However, converging evidence has shown that some amount of population structure confounding

likely still remains even after controlling for these principal components (e.g. Selzam et al., 2019).

Genetic nurture, on the other hand, refers to the phenomenon where a genetic factor shared between

children and their parents, siblings, or other relatives due to inheritance, is actually related to a parenting

behavior. Thus, we could observe a correlation between a genetic marker and an outcome simply because

that marker was also present in the parents, and caused the parents to behave in a certain way. For

example, Kong et al. (2018) demonstrate that a PGI for educational attainment based on parental SNPs

that were not transmitted to the children was significantly associated with offspring education even

after controlling for the offspring’s own educational attainment PGI. Such an association could well be

environmental in nature (i.e. non-transmitted parental SNPs may influence parental behaviors that have

downstream effects on offspring traits).

Both of these issues (population stratification and genetic nurture effects), however, will be substan-

tially reduced, if not completely removed, if one has access to data for more than one sibling. Including

family fixed effects in a regression analysis based on a sample of biologically related siblings is tanta-

mount to holding constant the parental genotypes and only using the random genetic variation between

the siblings. Thus, within-family estimates of the PGI effects are not confounded by genetic nurture

effects and will eliminate population stratification since individuals sharing the same parents are by

definition in the same genetic population strata. Thus, since differences between siblings in a PGI are

random, downstream effects are credibly causal. Therefore, we present PGI coefficient estimates based

on both between- and within-family models.

Several remaining caveats must be taken into account, however. The first thing to keep in mind is

that genetic effects are causal in the distal counterfactual sense: changing the genotype will ultimately

lead to a change in a trait. However, they do not at all imply a proximal biologically deterministic

interpretation of the etiology of the trait. In fact, it is completely possible that most or all of the genetic

effect is transmitted through entirely environmental pathways. Consider, for example, if a PGI for height

was also found to be associated with political participation. This could conceivably be partially explained

by a social context characterized by wage discrimination based on height, which then has downstream

effects on political participation. Thus, the chain of causation from genetic variation to a social outcome

will be long and complex.

Second, if a PGI for a given target trait is causally related to some outcome, this does not imply that

the genetic effect on the outcome is exclusively transmitted via the given target trait. Since genes may

affect multiple traits, a phenomenon known as pleiotropy, the mechanisms linking a PGI and an outcome
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could involve a large number of traits that are genetically related to the target trait. For example, in the

results section we show that a PGI for the Big Five personality trait neuroticism has a negative effect

on voter turnout. As we show in the Appendix (Table A.12) it is highly likely that part of this effect is

mediated via the corresponding neuroticism trait. However, extant research reports that the neuroticism

PGI is linked to traits other than neuroticism, such as educational attainment, that we know are related

to voter turnout (Selzam et al., 2019).

Third, a PGI is unlikely to capture all of the genetic influences on a trait. The precision of estimated

genetic effects in a GWAS, which are used as weights in the construction of a PGI, depends crucially on

the size of the sample being analyzed. Since social traits are highly polygenic (i.e., many variants with

very small effect sizes), even with very large samples these effects are estimated with some level of noise.

It is therefore not accurate say that the inclusion of a PGI can completely control for the effect of genetics

in any design. However, since they do capture some genetic effects, they can be used to increase power

and therefore precision even in studies not explicitly investigating genetic effects per se. Additionally,

it is important to keep in mind that the noise in the PGI is essentially classical measurement error

between families, meaning that unadjusted effect size estimates are going to be artificially small due to

attenuation bias (Becker et al., 2021).

Lastly, in line with the first point above, genetic effects may depend on the environmental context in

which they are expressed. As such, a PGI will capture the average treatment effect. Since we investigate

main effects in this study, it is entirely possible that a null or weak finding is the result of effect sizes of

different magnitudes or opposing signs in different segments of a sample.

Political Participation

As discussed in the introductory section, our goal in this paper is to illustrate the usefulness of the PGI

approach. To do so, we focus on the relationship between numerous PGIs and political participation.

Understanding the underpinnings of political participation is, for good reason, a central preoccupation

among political scientists. The idea behind the fundamental democratic right of “one person, one vote”

is that every citizen’s political preferences should carry equal weight when society makes joint decisions.

At the same time, we know from earlier research that political participation, and therefore political

power, is unequally distributed. Some people vote and participate in other modes of political activity

more often than others and therefore increase the likelihood that their wishes are heard by political

leaders (Lijphart, 1997). Given the importance of political engagement for representation (Griffin and

Newman, 2005; Hajnal and Trounstine, 2005), it is critical to solve the puzzle of why some people are

more participatory than others. In short, a better understanding of the causes of political participation

is a precondition for creating a more equal society (Campbell, 2013).
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Health and Political Participation

Although we know a great deal about the determinants of civic engagement, in the past decade or so

researchers have started to consider the relationship between a new set of factors—measures of health—

and political participation. Thus far, researchers have examined the link between a number of different

measures of health, some of which are more general in nature (e.g., self-rated health and subjective

well-being) and some of which capture more specific dimensions of health (e.g., depression/depressive

symptoms and physical ability), and political participation.

Within the literature on health and political participation, self-rated health (SRH) has been one of

the most commonly used measures of health (Mattila et al., 2018), thanks to its simplicity and good

measurement characteristics (e.g. Wuorela et al., 2020). Most research in this area has focused on voter

turnout, showing that people who report being in poor health are less likely to vote in elections than those

who are in good health (Pacheco and Fletcher, 2015; Mattila et al., 2013; Söderlund and Rapeli, 2015;

Stockemer and Rapp, 2019; Rapeli, Mattila and Papageorgiou, 2020; Burden et al., 2017; Engelman

et al., 2021). This finding is consistent with the resource theory of participation (Brady, Verba and

Schlozman, 1995), that health is a politically-relevant resource and being in poor health creates barriers

that make turning out to vote more arduous.

Researchers have also examined the relationship between SRH and non-voting measures of participa-

tion. Here, the findings are somewhat more mixed than they are for voter turnout with reports of positive

(Mattila et al., 2018), negative (Söderlund and Rapeli, 2015) and null (Burden et al., 2017; Stockemer

and Rapp, 2019; Adman, 2020) relationships. Interestingly, Mattila (2020) finds a more nuanced re-

lationship between health a political participation—poor health increases the odds of non-institutional

participation (e.g., boycotting, signing petitions), while good health increases the odds of traditional

institutional participation (e.g., voting, contacting government).

It is worth noting that while SRH captures physical, mental, and social factors, it has the most

predictive power when it comes to physical health (Mavaddat et al., 2011). In short, measures of SRH

are closely associated with the ability to perform physical functions. Recently, some research has emerged

on the link between specific measures of physical functioning and/or activity and political participation.

Burden et al. (2017), for example, find that walking speed, an indicator of broader physical functioning,

has a limited effect on voter turnout and no effect on donating to political campaigns. In a follow-up

analysis, Engelman et al. (2021) find that slow walking speed is associated with lower turnout and that

this relationship is especially pronounced among the least wealthy.

Researchers have also examined the connection between subjective well-being (SWB) and political

participation. Measures of SWB (also sometimes referred to as life-satisfaction or happiness) attempt to

capture how well people think their lives are going. We consider this a health measure because, according

to the World Health Organization, “health is a state of complete physical, mental and social well-being

and not merely the absence of disease or infirmity.”
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Existing studies generally indicate that there is a positive relationship between subjective well-being

and participation (Weitz-Shapiro and Winters, 2011; Flavin and Keane, 2012), with the idea being that

once people reach a certain level of satisfaction with their own lives, they may then begin to look beyond

themselves and try to address broader concerns by getting more involved in the political process.

Finally, some research has explored the link between more specific health measures and participation.

A relatively new but growing line of research has examined the association between depressive symptoms

and political behavior.5 Similar to work on SRH, the bulk of existing research on depression and engage-

ment has focused on voter turnout. Most studies find that turnout decreases as the severity of depressive

symptoms increases (Ojeda, 2015; Ojeda and Pacheco, 2019; Landwehr and Ojeda, 2021; Ojeda and

Slaughter, 2019; Engelman et al., 2021). Similar findings have emerged for non-voting measures as well

(Ojeda, 2015; Landwehr and Ojeda, 2021). Overall, the negative relationship between depression and

measures of political engagement fits well with the resource theory of participation—depression reduces

the resources available to participate (e.g., motivation and physical energy).

Psychological Traits and Political Participation

Over the past fifteen years, interest in the relationship between psychological traits and participation

has grown. Here, we focus on both cognitive (e.g., intellectual effort such as thinking or reasoning) and

noncognitive (e.g., personality traits, self-control, and socioemotional skills) traits.

Turning first to cognitive traits, scholars have devoted increasing attention to individual differences

in cognitive ability. Overall, studies on cognitive ability and participation consistently find that as

cognitive ability increases, the likelihood of voting and participating in other types of political activities

increases (Deary, Batty and Gale, 2008; Denny and Doyle, 2008; Dawes et al., 2014; Engelman et al.,

2021). Again, this pattern aligns with the resource theory of participation. In short, acts of political

participation typically require people to acquire and process information. If these tasks are easier for

those who have high levels of cognitive ability, then they should be more inclined to participate than

their counterparts.

There has also been growing interest in the relationship between noncognitive factors and participa-

tion. Here, we focus on five noncognitive traits: extraversion, neuroticism, adventureness, risk tolerance,

and chronotype. Both extraversion and neuroticism are traits within the Big Five model of personality.

In most studies, extraversion is positively related to political participation (Mondak, 2010; Gerber et al.,

2011; Dawes et al., 2014; Lindell and Strandberg, 2018).6 In general, the idea is that extraverted people

tend to be more inclined to participate in politics than their introverted counterparts because politics is

a place where they can express many of the characteristics they exhibit (e.g., sociable, assertive). For

5Depression has been measured in a variety of ways. In general, it is assessed by asking respondents a series of questions

related to their mood, such as “In the past 30 days, how often did you feel: So sad nothing could cheer you up?”
6In a recent meta-analysis based on 10 different datasets, Vitriol, Larsen and Ludeke (2020) found that the average

correlation between extraversion and participation is positive and statistically significant.
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neuroticism and participation, findings are a bit more mixed. Initial studies found divergent effects (e.g.,

Gerber et al. 2011 found a positive relationship between neuroticism and participation, while Mondak

2010 found a negative association), but a recent meta-analysis based on 10 different samples shows that

the average correlation between neuroticism and participation is negative and significant (Vitriol, Larsen

and Ludeke, 2020).

We are also interested in adventurousness, which refers to a preference for novel and intense experi-

ences. Although there has not been a great deal of work on this particular trait and political engagement,

adventurousness is a subfacet of the Big Five trait openness (Soto and John, 2012). Overall, research

on openness has shown that this trait is positively related to measures of political participation (Gerber

et al., 2010; Mondak, 2010; Vitriol, Larsen and Ludeke, 2020). People high in openness tend to like

encountering new ideas and are open to different perspectives, which both have a natural connection to

politics.

Beyond the Big Five and related personality traits, some research has examined the link between

risk preferences and participation. Kam (2012) finds that risk accepting people are more likely than

their counterparts to engage in a wide range of political acts. In part, the relationship is due to the fact

that risk-accepting individuals are highly motivated by novelty and excitement, which many political

activities provide. Oosterhoff and Wray-Lake (2020) find similar results using data on over 100,000 high

school students. Those with higher risk preferences were more likely than their counterparts to vote,

donate, write to government officials, boycott, and protest. The basic idea is that political participation

represents a novel behavior that entails potential rewards but also many potential risks (e.g., failure to

influence government, negative appraisals by peers).

The final trait we consider is chronotype, that is, whether an individual is a morning person (those

who prefer going to bed and waking earlier) or evening person (those who prefer a later bedtime and

later rising time). While there has been limited research on the consequences of chronotype for political

behavior, research in biology and psychology has found some evidence that morningness is associated with

prosocial behavior and empathy (Lange and Randler, 2011; Zoe, Depow and Inzlicht, 2021). Given the

idea that many political activities are prosocial in nature (Panagopoulos, 2010), the positive relationship

that has been observed between morningness and pro-sociality may extend to political engagement.

Interestingly, research by Vollmer and Randler (2012) has shown that morning types are more accepting

of social values (versus individual values) than evening types, in part because they have fewer problems

synchronizing with the daily social schedule. The notion that morning types are more oriented towards

social values may increase their propensity to participate in social and political activities. Only one study

of which we are aware has examined the association between morningness and participation. Ksiazkiewicz

and Erol (2022) recently reported that morning chronotype is positively associated with voter turnout.
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Data and Samples

We use data from four different samples to examine the relationship between the ten psychological and

health trait PGIs and four measures of political participation: the Minnesota Twin Family Study, the

National Longitudinal Study of Adolescent to Adult Health, the Wisconsin Longitudinal Study, and the

Swedish Twin Registry.

The Minnesota Twin and Family Study (MTFS) is a population-based multi-wave longitudinal study

of same-sex twins and their parents from the Upper Midwest and is collected by the Minnesota Center

for Twin and Family Research (MCTFR) (Iacono, McGue and Krueger, 2006). The MTFS twin sample

is comprised of two age cohorts, one in which subjects were 11 years old at the time of their initial

assessment and the other in which subjects were 17 years old. The younger cohort was born between

1977-1994 and the older cohort was born between 1972-1979.

The National Longitudinal Study of Adolescent to Adult Health (Add Health) is a multi-wave lon-

gitudinal study of a nationally representative sample of adolescents in grades 7-12 in the United States,

during the 1994-95 school year (Harris et al., 2013). In Wave I of the Add Health study, researchers

created a sample of sibling pairs based on a screening of a sample of 90,118 adolescents. These pairs

include all adolescents that were identified as twin pairs, full-siblings, half-siblings, or unrelated siblings

raised together.

The Wisconsin Longitudinal Study (WLS) is a long-term multi-wave longitudinal study of a random

sample of 10,317 men and women who graduated from Wisconsin high schools in 1957 (Herd, Carr and

Roan, 2014). Survey data was collected from the original respondents in several waves between between

1957 and 2011 and from a selected sibling between 1977 and 2011.

The Swedish Twin Registry (STR) began in the 1950s and contains nearly all twins born in Sweden

since 1886. The total sample contains more than 170,000 twins (Lichtenstein et al., 2007).

Political Participation Measures

We focus on four different measures of political participation: self-rated voter turnout (only available in

Add Health and MCTFR), validated voter turnout in high-stakes elections (presidential elections and

elections to the national parliament; not available in Add Health), validated voter turnout in low-stakes

elections (midterm elections and elections to the European Parliament; not available in Add Health),

and a political participation index (only available in Add Health and STR). Table A.1 in the Appendix

lists the question wordings for all items used to construct the outcomes in each of the four samples.

In some of the samples, we have access to information on the outcomes (e.g., self-rated voter turnout,

political participation) from multiple survey waves. In those cases, we use the latest available observation

for each individual. Likewise, in some of the samples we have information on validated voter turnout

from multiple elections. In those cases, the outcome for each individual will be measured as average
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turnout across all elections for which we have data. All outcome measures are recoded to the 0–1 range.

Polygenic Indices

We obtain the PGIs used in the analyses from a recently established repository of polygenic indices

(Becker et al., 2021). The repository is intended as a resource for researchers who wish to include genetic

data in their studies. The repository contains PGIs for 47 different traits in 11 samples constructed

using a consistent methodology. In the Appendix, we provide a description on how to get access to the

repository samples of greatest interest to the political science community.

We restrict the repository data in several ways. First, we only use data from samples that include a

large number of sibling pairs, information on relevant political outcomes, and measures of the PGIs of

interest. This leaves us with the four samples included in the this study: Add Health, WLS, MCTFR

and STR. Second, we only include PGIs with an estimated capacity to predict the target trait of 2% or

more (see Table A.2 in the Appendix). In addition to the 10 health and psychological PGIs, we use the

PGI for educational attainment in each sample as a benchmark against which the effects of the other 10

PGIs of interest can be compared. PGIs for educational attainment have a moderate level of predictive

power (Becker et al., 2021) and two studies have recently established that PGIs for education are related

to voter turnout (Dawes et al., 2021; Aarøe et al., 2021).

In total, we have four PGIs for health traits (depressive symptoms, physical activity, self-rated health,

and subjective well-being) and six PGIs for psychological traits (cognitive performance, adventurousness,

extraversion, chronotype/morning person, neuroticism, and risk tolerance). We standardize all PGIs

(within each sample and birth-year) to have a mean equal to 0 and a standard deviation equal to 1.

Table 1 below displays summary statistics for the four samples and Table A.4 in the Appendix presents

bivariate correlations between all PGIs used in this study.

Results

Baseline Estimates

Figure 1 presents our baseline estimates and 95% confidence intervals for the associations between the ten

PGIs and the four different measures of political participation. We report results from the pooled sample

and with all available observations included; the full regression results (Table A.5) and separate baseline

results for the Swedish and US subsamples (Tables A.7 through A.10) are reported in the Appendix.7

We regress each political participation measure on each of the ten PGIs separately, controlling for the

first 10 genetic principal components of the genetic-relatedness matrix as well as birth-year dummies,

7The analysis plan stipulated that only complete sibling pairs be used, to facilitate comparisons with within-family

results. These results are therefore found in Figure 2 (circles). In order to instead utilize the full samples, Figure 1 also

contains singletons.
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Table 1: Summary Statistics

MTFS Add Health WLS STR

Self-Reported Turnout 0.742 0.436

(0.323) (0.386)

Presidential Vote 0.915 0.862

(0.194) (0.300)

Midterm Vote 0.715 0.810

(0.335) (0.344)

National Vote 0.934

(0.203)

European Parliament Vote 0.625

(0.430)

Participation index 0.029 0.090

(0.122) (0.195)

Birth Year 1969.1 1979.0 1939.5 1970.9

(15.95) (1.771) (4.310) (23.66)

Male 0.470 0.389 0.480 0.457

(0.499) (0.488) (0.500) (0.498)

N 2,333–7,525 4,791-5,652 8,534–8,937 9,598-43,669

Notes: Means and standard deviations (in parentheses) for some key variables. Presiden-

tial, midterm, national, and European Parliament election turnout are measured as average

turnout across all the elections for which we have information for the individuals.

gender, interaction terms between the birth-year dummies and the gender indicator, and fixed effects

for subsample. We also restrict the samples to individuals of European descent (as an additional way of

addressing population stratification). We use OLS for all models and all standard errors are clustered at

the family-level. To account for multiple comparisons and adjust for the false discovery rate, we also use

the Benjamini-Hochberg procedure per outcome (Benjamini and Hochberg, 1995). Filled circles indicate

significance at the .05-level.

In addition to the estimated effects displayed in Figure 1, we report the incremental R2 (∆R2), or the

increase in the coefficient of determination accounted for by the PGIs in Table A.5 in the Appendix. The

incremental R2 for the PGI is obtained by subtracting the R2 from a model only including the control

variables as predictors from the R2 from a model that also includes the PGI as a regressor.

To put the effects of the ten psychological and health trait PGIs on the participatory outcomes in
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perspective, the first row in each panel displays corresponding estimates for the educational attainment

(EA) PGI. As recently established by Dawes et al. (2021) and Aarøe et al. (2021), education linked genes

are significantly related to validated and self-reported voter turnout. We extend these results by showing

that the EA PGI is also positively associated with an index measuring non-voting participatory acts.

For two reasons, we expect the EA PGI to be particularly strongly related to the four outcomes.

First, previous research has shown that EA is among, if not the most important predictor of participation

(Verba, Schlozman and Brady, 1995; Smets and van Ham, 2013; Persson, 2015). Second, the predictive

capacity of a PGI is dependent on the precision of the weights used to construct the PGI. Since the

separate effects of individual genetic markers (SNPs) on complex human traits are bound to be very small,

large discovery samples are needed to obtain reasonably precise estimates of the weights. The GWAS

estimates used to construct the EA PGI are derived from a very large discovery sample (> 1, 000, 000)

and the predictive capacity of the resulting PGI is consequently substantial.8 In line with this, Dawes

et al. (2021) report that the effect of the EA PGI on voter turnout is on par with that of other well-

known and strong predictors of political participation such as personal and parental income and parental

education.

Turning now to the estimated effects of the psychological and health trait PGIs in rows 2 through 11

and looking first at the results for validated first- and second-order turnout in the two leftmost panels,

a couple of things stand out. First, a majority of the PGIs are significantly related to voter turnout.

Moreover, the directions of these associations are consistent with previous research on the effects of

psychological and health traits on voter turnout and political participation. Thus, the effects of the

PGIs for cognitive performance, adventurousness (only for second-order voting), morningness (only for

first-order voting), self-rated health, subjective well-being and physical activity are positive whereas

the neuroticism and depression PGIs are negatively associated with voter turnout. The results for risk

attitudes are less clear and suggest that individuals more prone to risky behavior are less likely to vote

in first-order elections but more inclined to vote in second-order elections.

Second, the magnitudes of these effects are non-negligible. For example, a one standard deviation

increase in the PGIs for cognitive performance or self-rated health increases the likelihood of voting in

midterm or European Parliament elections by around 4 percentage points. Put differently, each of these

two PGIs accounts for almost 1% of the variation in voter turnout in second-order elections (see Table

A.5 in the Appendix).

Looking instead at the results for self-reported voting the overall pattern of estimates is very similar

to the one found for the validated turnout outcomes. Concerning non-voting political participation, it

is interesting to note that the few significant PGIs corroborate a common finding in previous research

on personality and politics. Above all, the PGIs for extraversion, risk attitudes and adventurousness

8Lee et al. (2018) show that the EA PGI explain 12-13% of the variation in years of schooling which amounts to around

50% of the total SNP heritability in educational attainment.
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are positively related to political acts such as contacting a politician or attending a political rally. This

suggests that these traits have positive effects on participation in some circumstances, especially those

involving greater amounts of sociability, but not in others (Mondak et al., 2010; Gerber et al., 2011;

Lindell and Strandberg, 2018). In the Appendix (Table A.11) we report estimated effects of the PGIs on

each of the acts included in the participation index separately. In addition, in the Appendix we present

the results from a preliminary mediation analysis where we examine whether and to what extent the

different PGIs influence political participation via their respective target traits. Overall, our analysis

suggests that the effects of the PGIs are partly mediated by the traits they are constructed to predict.

Figure 1: Baseline results

Note: PGIs for: (E)ducational (A)ttainment; (C)ognitive (P)erformance; (EX)traversion; (NE)uroticism; (RI)sk;

(AD)venturousness; (MO)rning person; (S)elf(R)ated (H)ealth; (DEP)ression; (S)ubjective (W)ell(B)eing; physical

(ACT)ivity. The polygenic indices are standardized within each sample and birth year (mean=0, s.d.=1). All models

include controls for sex, birth-year dummies, interaction between sex and the birth-year dummies, sample fixed effects,

and the first ten principal components of the genetic-relatedness matrix. Standard errors, shown in parentheses, allow for

clustering at the family level. The significance tests are adjusted for false discovery rate within each column using the

Benjamini-Hochberg procedure. Filled circles indicate indicates significance at the 5% level. Complete coefficient estimates

together with standard errors are reported in Table A.5 in the Appendix.
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Within-family analysis

We next assess the extent to which the associations between the health and psychological trait PGIs

reported in Figure 1 can be considered causal in nature. As discussed above, the PGI effects may be

confounded by population stratification despite the fact that the previous analysis included controls for

a set of principal components of the genetic-relatedness matrix and restricted the samples to individuals

of European descent. Moreover, the between-family estimates displayed in Figure 1 may capture both

direct genetic effects (effects of individuals’ health- and psychological trait-linked genes on their political

behavior) and indirect effects via genetic nurture.

In order to identify and account for bias due to any remaining population stratification and genetic

nurture, we restrict our analysis to sibling pairs and run sibling-fixed effects models. The coefficient

estimates and the 95% confidence intervals are presented in Figure 2. To simplify interpretation, we

display the between-family effects in this restricted sample as circles and the estimates from models in

which we include fixed effects for each sibling pair as traingles.

Looking first at the results for validated first- and second-order voting in the first two panels, the

significant estimates in the sibling fixed-effects models in which we only make use of random within-

family variation in the PGIs strongly suggest that many of the psychological and health PGIs are causally

related to voter turnout. However, comparing the between- and the within-family estimates, there is

some indication of confounding in the models for voting in second-order elections. Thus, to a certain

degree, the between-family estimates (circles) may pick up effects of genetic nurture and population

stratification. In accordance with previous studies on the effects of the EA PGI on various outcomes, we

hypothesize that the bulk of the difference between the between- and within-family estimates is due to

genetic nurture effects (Kong et al., 2018; Selzam et al., 2019; Dawes et al., 2021) (although as previously

mentioned, the within-family estimates may also be “overcorrected” toward zero due to attenuation bias

in within-family models).

The within-family results for self-reported voting and the political participation index are less pre-

cise. The estimates for the political participation index follow the pattern for second-order voting in

that the magnitude of the between-family coefficients are larger than the corresponding within-family

coefficients in most cases. On the other hand, there is no clear pattern of smaller effects when com-

paring the significant between-family coefficients for self-reported voting to the corresponding sibling

fixed-effects estimates. Thus, the results do not suggest that the between-family estimates are inflated

due to population stratification or genetic nurture.
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Figure 2: Within-family results

Note: PGIs for: (C)ognitive (P)erformance; (EX)traversion; (NE)uroticism; (RI)sk; (AD)venturousness; (MO)rning per-

son; (S)elf(R)ated (H)ealth; (DEP)ression; (S)ubjective (W)ell(B)eing; physical (ACT)ivity. The polygenic indices are

standardized within each sample and birth year (mean=0, s.d.=1). Circles denote PGI effects from between-family mod-

els. Triangles denote PGI effects from family-fixed effects. All between-family models include controls for sex, birth-year

dummies, interaction between sex and the birth-year dummies, sample fixed effects, and the first ten principal components

of the genetic-relatedness matrix. The within-family models include controls for sex and sample fixed effects. Standard

errors, shown in parentheses, allow for clustering at the family level. The significance tests are adjusted for false discovery

rate within each column using the Benjamini-Hochberg procedure. Filled circles/triangles indicate indicates significance at

the 5% level. Complete coefficient estimates together with standard errors are reported in Table A.6 in the Appendix.
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Discussion

This study makes several empirical contributions to the political behavior literature. Above all, it

improves our understanding of how genes are related to political participation. Past work based on

twin studies has demonstrated that individual differences in the propensity to vote and engage in other

political acts can be partly explained by genetic variation. However, twin studies cannot make individual

quantitative predictions about the specific sources of genetic and environmental variance. The departure

point for this study was a number of psychological and health traits that have been shown to be related

to political participation in previous research. In contrast to previous studies on psychological and health

traits and participation, we made use of polygenic indices constructed to capture the genetic variation

in ten of these psychological and health traits. Based on over 40,000 individuals in four samples from

the US and Sweden we showed that genes linked to these traits predict voter turnout and engagement

in non-electoral political acts. The significant associations we found between the PGIs and our outcome

measures, especially based on the within-family models, represent strong evidence of a molecular genetic

association with political participation. Furthermore, the estimated effects are substantially meaningful;

for example, a one-standard deviation increase in the PGIs for cognitive performance and self-rated

health is associated with a 4 percentage points increase in the likelihood of voting in a second-order

election.

It is important here to note that a PGI does not fully capture the genetic variation in its target trait.

Table A.2 in the Appendix reports the predictive capacity of the PGIs and the heritability based on

all genotyped SNPs, the so called SNP heritability, for the ten psychological and health traits used in

this study. The SNP heritability is the upper theoretical limit for the predictive capacity based on all

genotyped SNPs. The average SNP heritability for the ten traits is equal to 12.4% with a low of 5.1%

(risk attitudes) and a high of 23.2% (cognitive performance). The corresponding predictive capacities

(measured as the incremental R2) of the PGIs vary between 2.4% (the PGI for risk attitudes) and 10.7%

(the PGI for cognitive performance) with an average amounting to 5.0%. Consequently, our results

represent a lower bound on the effect of genes associated with the ten psychological and health traits

on voter turnout and political participation. Ongoing larger GWA studies will provide us with more

accurate polygenic indices in the near future.

Our study is also meant to serve as an example of how genetic information can be practically integrated

into empirical political science research. A central task for future research on political behavior should

be to continue along this path and increase our understanding on how the interplay between genetic and

social factors accounts for individual differences in political traits. In our view, such an enterprise will

ultimately make significant contributions to the study of political behavior. We argue that the use of

polygenic indices can play a crucial role in such an endeavour. The increasing availability of powerful

polygenic indices linked to different social and psychological traits will greatly aid political scientists

who are interested in integrating genetic information into their own empirical work. As described in the
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Appendix, several PGIs connected to a number of datasets of interest for social and political scientists

are already available. Moreover, given the rapid development in genomic research and the decreasing

costs of genotyping, we expect that PGIs will be available in a growing number of datasets that include

information on political traits in the near future.

In the empirical section of the study we provided an example of how PGIs can be very useful for

researchers with a primary interest in understanding the genetic underpinnings of political traits. For

one thing, within-family estimates of PGI effects provide us with credible causal evidence of effects of

genetic markers linked to certain traits on political traits. However, polygenic indices are not simply a

means of detecting genetic influence. As way of conclusion we will therefore explicate and exemplify how

PGIs can be integrated into political behavior research in ways useful to political scientists who do not

care about genes per se.9

We anticipate that the eventual contributions of integrating PGIs into political behavior research will

fall into several categories. First, while rising standards for causal inference have prompted scholars of

political behavior to employ a variety of approaches (e.g. instrumental variables regressions and RCTs)

in their search for causal antecedents of political traits, these approaches often have important limitations

and may not be possible for some research questions. Thus, there is a (growing) need for better ways

of directly controlling for possible confounders in standard correlational research designs. By including

PGIs as control variables, researchers studying political behavior can reduce potential bias due to genetic

confounding (as well as account for residual variance and thus lower the standard errors associated with

estimates of nongenetic parameters of interest).

As an illustration of this, we present results in the Appendix (Table A.13) showing that the effects of

the health and psychological traits on voter turnout and political participation decrease by, on average,

11% when controlling for the other PGIs examined in this paper. As more precise PGIs become available,

this effect size reduction will only increase (Becker et al., 2021).

Second, PGIs can be used to enrich political socialization research and help us peer into the black box

of the family. A case in point is parent-child relations. We know from a longstanding research tradition

that children resemble their parents along a number of political attitudes and behaviors (Jennings,

Stoker and Bowers, 2009). However, correlations between biological relatives are etiologically ambiguous

since parents transmit both a rearing environment and a set of genes to their children. One way of

disentangling social from genetic intergenerational transmission is to study genetic nurture effects. For

example, showing that parental genotype (as measured by PGIs) is related to offspring traits conditional

on offspring genotype strongly suggests a role of environmental factors affected by heritable characteristics

of the parents. Moreover, PGIs can help us study how children influence their parents and siblings or

actively evoke their environments. It has been reported that having sisters causes young men to be

more likely to express conservative viewpoints (Healy and Malhotra, 2013) and that having a first-born

9The following empirical examples were not pre-registered.

20



daughter leads to higher levels of support for gender-equality policies and candidates among the fathers

(Oswald and Powdthavee, 2010; Sharrow et al., 2018). By conditioning on the genotypes of parents or

siblings, it is possible to study how the random draw of genetic predispositions for a host of traits also

affects parental and sibling behavior.

In the Appendix (Table A.14) we provide an empirical example of the latter kind. More precisely, we

test if a person’s political participation is associated with his/hers sibling’s genetic predispositions for the

traits in focus in this study. The pattern of results in these sibling-correlation models is striking. There

are no signs of sibling genetic nurture effects on voting in first-order elections. The models for second-

order voting, however, show consistent and relatively strong effects of the sibling’s PGIs on the propensity

to vote. This difference in results for first- and second-order voting is interesting and suggests that the

lower-salience and information-poor environment in the typical second-order election will increase the

relative importance of the social context - here understood as the predispositions of one’s siblings - over

individual resources in determining an individual’s decision to vote.

Third, PGIs can be a powerful source of latent heterogeneity, providing measures of moderating

traits that may otherwise be difficult or impossible to capture, for example in studies of environmental

interventions to increase voter turnout (Imai and Strauss, 2011; Kam and Trussler, 2017) or when investi-

gating whether certain reforms exacerbate or mitigate existing inequalities (Larsen, 2019). As previously

discussed, PGIs have properties that many other such measures lack, such as safeguarding against re-

verse causation and providing the possibility of using within-family variation to plausibly identify causal

effects. This type of interplay between genetic and social factors, often called gene-environment interac-

tions (GxE) is widely believed to be pervasive for behavioral traits (Conley and Rauscher, 2013).

As a simple but concrete example, in section A.2.8 in the Appendix we show that educational attain-

ment, in accordance with a diathesis-stress hypothesis (Monroe and Simons, 1991; Colodro-Conde et al.,

2018), acts as a significant dampener on the negative influence of the depression PGI on voter turnout.

The negative influence of genetic susceptibility to depression appears to be driven completely by those

at the low end of the education distribution, while at the top end of the distribution the relationship in

fact disappears.

To summarize, our study provides an example of how genetic information can be practically integrated

into empirical political science research. While twin studies have shined a light on the link between genes

and political traits, they are limited in what they can tell us. Rather than a latent measure of genetic

factors, polygenic indices are individual-level, direct measures of the genetic propensity for a trait that can

be used to build and test new theories as well as refine existing ones. Large GWA studies are increasingly

being conducted for social behaviors and outcomes, many of which are relevant for political scientists. In

addition, there is a growing availability of samples that include information on both PGIs for different

relevant traits and measures of political attitudes and behavior. Our hope is that scholars will integrate

both genetic and social factors in models of political behavior in order to more fully understand and
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account for the processes that give rise to individual differences in political attitudes and behavior. As

such, a research agenda along these lines can also aid in developing more effective policies that deal with

the underlying causes and consequences of persistent inequalities in political behavior.
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Supplementary Appendix

A.1 Data

Table A.1 displays the question wordings for all items used to construct the political participation

measures in each of the four samples or cohorts used in this study. Table A.2 lists all polygenic indices

included in the PGI repository described in Becker et al. (2021) and used in this study. The 10 PGIs

included in the study are in boldface. The criteria for being included in the study are as follows: i) a

health or psychological target trait and ii) an incremental R2 ≥ 2%. Finally, Table A.3 shows all cohorts

included in the PGI repository. The four samples included in the study are in boldface. The criteria

for being included in the study are as follows: i) relevant political outcomes should be included; and

ii) the sample should be family-based/include sibling pairs. It should be noted here that several of the

remaining repository cohorts include phenotypic data of relevance to political behavior researchers, for

instance the English Longitudinal Study of Ageing UK (ELSA) and Dunedin Multidisciplinary Health

and Development Study New Zealand.

We use restricted individual level information obtained from each of the four cohorts. As part of

our contractual agreement with each cohort, we agreed not to disseminate the data to other individuals.

However, researchers can access the restricted data directly from each cohort.

Add Health: Access to the polygenic indexes and full phenotype data in Add Health is publicly avail-

able via a restricted data use contract with the University of North Carolina at Chapel Hill. Obtain access

by visiting the CPC Data Portal at data.cpc.unc.edu/projects/2/view or see the Add Health data page at

https://www.cpc.unc.edu/projects/addhealth/documentation/restricteduse. Add Health genotype data

can be accessed via the database of Genotypes and Phenotypes (dbGaP, www.ncbi.nlm.nih.gov/gap,

accession number phs001367.v1.p1).

MTFS: Access to the MTFS PGIs is available by contacting Matt McGue (mcgue001@umn.edu),

who will provide access authorization. Access to MTFS phenotypic data will require a research proposal

the structure of which can be provided by Matt McGue. Use of phenotypic data requires an approved

proposal that is approved by the MTFS Principal Investigator Committee; access to the MTFS PGIs

does not require an approved proposal.

WLS: Both the WLS polygenic index and phenotypic data is publicly available. As of November

2022, researchers who wish to use these polygenic indexes should email a brief research proposal and

a copy or link to their CV to Carol.Roan@wisc.edu. Researchers will additionally need to receive IRB

approval from their home institution and enter into a Data Use Agreement between the researcher’s

home institution and the University of Wisconsin-Madison. For the most up-do-date instructions, see

www.ssc.wisc.edu/wlsresearch/documentation/GWAS/.

STR: Researchers interested in using STR data must obtain approval from the Swedish Ethical Re-
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view Authority and from the Steering Committee of the Swedish Twin Registry. Researchers using STR

data are required to follow the terms of a number of clauses designed to ensure protection of privacy and

compliance with relevant laws. For further information please visit https://ki.se/en/research/swedish-

twin-registry-for-researchers.

Table A.1: Measures of the political outcomes per cohort

Minnesota Center for Twin and Family Research (MTFS)

Political participation N/A

Turnout - self-stated I vote in national or state elections is “not true at all”, “not very

true”, “pretty true”, or “very true”.

Turnout - high stake 1996, 2000, 2004, 2008, 2012, 2016 and 2020 elections

Turnout - low stake 1994, 1998, 2002, 2006, 2010, 2014 and 2018 elections.

National Longitudinal Study of Adolescent to Adult

Health (Add Health)

Political participation Question wording: “Which of the following things have you done

during the last 12 months?” Response alternatives: i) Con-

tributed money to a political party or candidate; ii) Contacted

a government official regarding political or community issues; iii)

Run for a public office; iv) Run for a non-public office; v) At-

tended a political rally or march. Political participation is an

additive index including the 3 subitems that are also present in

the other datasets (contacted gov’t official, contributed, attended

rally/march/demonstration), rescaled to the 0-1 range.

Turnout - self-stated Question wording: “How often do you usually vote in local or

statewide elections?” Response alternatives: i) Never; ii) Some-

times; iii) Often; iv) Always. The turnout scale will be rescaled

to the 0-1 range.

Turnout - high stake N/A

Turnout - low stake N/A

Swedish Twin Registry (STR)

Political participation Question wording: “During the last five years, have you done any

of the following to express your political opinions?” Response al-

ternatives: i) Contacted a politician personally, or in writing, or

some other way; ii) Contacted a public sector official; iii) Made

financial contributions; iv) Participated in a protest action or

demonstration; v) Boycott, for example certain goods; vi) Signed a

petition. Political participation is an additive index including the

3 subitems that are also present in the other datasets (contacted

gov’t official, contributed, attended rally/march/demonstration),

rescaled to the 0-1 range.

Turnout - self-stated N/A

Continued on next page
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Table A.1: Measures of the political outcomes per cohort

Turnout - high stake Validated turnout data from the national elections in 1970, 1994,

2010, and 2018. Turnout is measured as the per-individual average

turnout across all 4 elections.

Turnout - low stake Validated turnout data from the European Parliament elections in

2009 and 2019. Turnout is measured as the per-individual average

turnout across the 2 elections.

Wisconsin Longitudinal Study (WLS)

Political participation NA

Turnout - self-stated Which statement best describes your decision to vote in the

November 2002 election? i) I did not vote in the election in

November 2002 ii) I thought about voting in November 2002 but

did not iii) I usually vote but did not vote in November 2002 iv)

I am sure I voted at the polls in the election in November 2002

v) I am sure I voted by absentee ballot in November 2002. Which

statement best describes your decision to vote in the November

2008 election? i) I did not vote in the election in November 2008

ii) I thought about voting in November 2008 but did not iii) I

usually vote but did not vote in November 2008 iv) I am sure I

voted at the polls in the election in November 2008 v) I am sure

I voted by absentee ballot in November 2008.

Turnout - high stake 2000, 2004, 2008, and 2012 elections

Turnout - low stake 2002, 2006, and 2010 elections.

Table A.2: Polygenic indices in the PGI repository

Target trait Incremental R2 h2
SNP

Anthropometric

Body mass index (BMI) 17.03% 24.26%

Height 36.20% 46.60%

Cognition and education

Alzheimer’s 0.22% 4.62%

Childhood reading 1.14% 6.90%

Cognitive performance 10.73% 23.18%

Educational attainment 7.27% 11.04%

Highest math 7.85% 15.10%

Self-reported math ability 8.47% 14.62%

Fertility and sexual development

Age at first birth 6.98% 19.58%

Age first menses (women) 9.88% 19.65%

Continued on next page
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Table A.2: Polygenic indices in the PGI repository

Age voice first deepened (men) 0.79% 9.63%

Number ever born (men) 0.58% 4.40%

Number ever born (women) 1.72% 7.96%

Health and health behaviors

Alcohol - misuse 1.62% 9.83%

Allergy - cat 0.67% 9.61%

Allergy dust 0.49% 8.17%

Allergy - pollen 0.87% 11.03%

Asthma 1.72% 5.91%

Asthma/eczema/rhinitis 3.37% 8.18%

Attention deficit hyperactivity disorder 4.09% 22.84%

Cannabis use 1.46% 8.25%

Cigarettes per day 3.49% 11.07%

COPD 0.36% 2.64%

Depressive symptoms 3.08% 7.22%

Drinks per week 2.17% 5.46%

Eczema 0.07% 1.03%

Ever smoker 5.43% 8.73%

Hayfever 2.59% 7.63%

Migraine 1.76% 5.97%

Nearsightedness 7.53% 16.57%

Physical activity 3.95% 15.13%

Self-rated health 5.48% 9.34%

Personality and well-being

Adventurousness 3.51% 8.14%

Agreeableness 0.67% 8.58%

Cognitive empathy 0.77% 10.33%

Conscientiousness 0.87% 9.81%

Delay discounting 0.21% 7.48%

Extraversion 3.88% 19.78%

Left out of social activity 1.90% 5.79%

Life satisfaction - family 1.04% 7.17%

Life satisfaction - finance 0.99% 7.16%

Life satisfaction - friends 1.14% 7.61%

Life satisfaction - work 0.58% 7.55%

Loneliness 0.86% 3.99%

Morning person 7.76% 15.86%

Narcissism 1.23% 4.69%

Neuroticism 5.67% 12.61%

Openness 1.44% 11.17%

Recharge by socializing 0.73% 3.43%

Religious attendance 1.28% 5.17%

Continued on next page
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Table A.2: Polygenic indices in the PGI repository

Religious belief 0.64% 7.01%

Risk tolerance 2.45% 5.13%

Subjective well-being 3.01% 7.68%

Table A.3: Samples in the PGI repository

Sample Country

Dunedin Multidisciplinary Health and Development Study New Zealand

English Longitudinal Study of Ageing UK

Environmental Risk Longitudinal Twin Study UK

Estonian Genome Center, University of Tartu Estonia

Health and Retirement Study US

Minnesota Center for Twin and Family Research US

National Longitudinal Study of Adolescent to Adult Health US

Swedish Twin Registry Sweden

Texas Twin Project US

UK Biobank UK

Wisconsin Longitudinal Study US
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A.2 Auxiliary results and robustness checks

In this section we provide some details on the auxiliary results and robustness checks briefly discussed

in the main text.

A.2.1 PGI cross-correlations

Figure A.4 displays bivariate correlations for the eleven PGIs used in this study. A number of mostly

expected clusters can be noted. First, the PGIs for educational attainment and cognitive performance

are positively correlated (Okbay, Beauchamp, Fontana et al., 2016; Lee et al., 2018). Second, as reported

in Okbay, Baselmans, De Neve et al. (2016) subjective well-being, depressive symptoms, and neuroticism

are genetically correlated. Third, genetic predispositions for risk attitudes are positively correlated with

predispositions for adventurousness and, to a lesser extent, extraversion. Finally, the PGI for self-rated

health seems to be moderately strongly correlated with the PGIs for the remaining three health-trait

PGIs: depression, subjective wellbeing, and physical activity.

Table A.4: PGI cross-correlations

Variables EA CP EX NE RI AD MO SRH DEP SWB ACT

EA 1.000

CP 0.447 1.000

EX 0.003 -0.058 1.000

NE -0.107 -0.090 -0.144 1.000

RI 0.068 -0.029 0.227 -0.187 1.000

AD 0.119 -0.033 0.243 -0.137 0.487 1.000

MO -0.034 -0.078 0.038 -0.050 0.026 0.066 1.000

SRH 0.361 0.190 0.047 -0.237 0.092 0.188 0.126 1.000

DEP -0.184 -0.113 -0.054 0.522 -0.069 -0.072 -0.079 -0.399 1.000

SWB 0.155 0.073 0.148 -0.388 0.197 0.156 0.115 0.370 -0.456 1.000

ACT 0.180 0.011 0.082 -0.061 0.124 0.172 0.096 0.290 -0.139 0.159 1.000

Note: PGIs for: (E)ducational (A)ttainment; (C)ognitive (P)erformance; (EX)traversion; (NE)uroticism; (RI)sk;

(AD)ventouresness; (MO)rning person; (S)elf(R)ated (H)ealth; (DEP)ression; (S)ubjective (W)ell(B)eing; physical

(ACT)ivity. The polygenic indices are standardized within each sample and birth year (mean=0, s.d.=1).
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A.2.2 Full regression results

In the main text we present the results using graphs. The corresponding regression tables are presented

below. That is, Figure 1 in the main text is based on the estimates displayed in Table A.5 whereas the

estimates displayed in Figure 2 are found in Table A.6.

Table A.5: Baseline results

1st order 2nd order Self-reported Participation

EA 0.016∗∗∗ 0.067∗∗∗ 0.050∗∗∗ 0.016∗∗∗

[0.001] [0.002] [0.004] [0.002]
∆R2 0.514 2.588 1.578 0.760

CP 0.010∗∗∗ 0.042∗∗∗ 0.023∗∗∗ 0.009∗∗∗

[0.001] [0.002] [0.004] [0.001]
∆R2 0.195 1.019 0.343 0.265

EX −0.001 0.003 0.012∗∗∗ 0.005∗∗∗

[0.001] [0.002] [0.004] [0.002]
∆R2 0.001 0.006 0.092 0.087

NE −0.004∗∗∗ −0.022∗∗∗ −0.020∗∗∗ −0.000
[0.001] [0.002] [0.004] [0.001]

∆R2 0.027 0.274 0.263 0.000

RI −0.002∗∗ 0.006∗∗∗ 0.011∗∗ 0.009∗∗∗

[0.001] [0.002] [0.004] [0.001]
∆R2 0.011 0.023 0.075 0.244

AD −0.001 0.007∗∗∗ 0.012∗∗∗ 0.006∗∗∗

[0.001] [0.002] [0.004] [0.001]
∆R2 0.003 0.027 0.095 0.103

MO 0.002∗∗ −0.001 0.002 −0.003
[0.001] [0.002] [0.004] [0.002]

∆R2 0.009 0.001 0.004 0.028

SRH 0.013∗∗∗ 0.038∗∗∗ 0.033∗∗∗ 0.001
[0.001] [0.002] [0.004] [0.002]

∆R2 0.332 0.853 0.695 0.004

DEP −0.009∗∗∗ −0.024∗∗∗ −0.022∗∗∗ 0.002
[0.001] [0.002] [0.004] [0.002]

∆R2 0.148 0.339 0.315 0.008

SWB 0.008∗∗∗ 0.024∗∗∗ 0.020∗∗∗ −0.001
[0.001] [0.002] [0.004] [0.001]

∆R2 0.119 0.348 0.249 0.003

ACT 0.005∗∗∗ 0.019∗∗∗ 0.017∗∗∗ 0.003
[0.001] [0.002] [0.004] [0.001]

∆R2 0.057 0.206 0.193 0.022

Y 0.920 0.664 0.525 0.070
N 54,031 54,351 7,966 14,389

Note: The polygenic indices are standardized within each sample
and birth year (mean=0, s.d.=1). All models include controls for
sex, birth-year dummies, interaction between sex and the birth-year
dummies, sample fixed effects, and the first ten principal compo-
nents of the genetic-relatedness matrix. Standard errors, shown in
parentheses, allow for clustering at the family level. The significance
tests are adjusted for false discovery rate within each column using
the Benjamini-Hochberg procedure. ***/**/*, indicates significance
at the 1/5/10% level.
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Table A.6: Within-family results

1st order 2nd order Self-reported Participation
BF WF BF WF BF WF BF WF

CP 0.011∗∗∗ 0.012∗∗∗ 0.041∗∗∗ 0.023∗∗∗ 0.017∗ 0.029 0.007∗∗ 0.008
[0.002] [0.003] [0.003] [0.005] [0.009] [0.014] [0.003] [0.005]

EX −0.002 −0.001 −0.001 0.005 0.017 0.037∗∗ 0.010∗∗∗ 0.004
[0.002] [0.003] [0.003] [0.005] [0.009] [0.014] [0.003] [0.006]

NE −0.005∗∗ −0.008∗∗ −0.024∗∗∗ −0.012∗∗ −0.016 −0.009 −0.003 −0.005
[0.002] [0.003] [0.003] [0.005] [0.009] [0.014] [0.003] [0.005]

RI −0.002 −0.002 0.014∗∗∗ 0.011∗∗ 0.020∗ 0.008 0.013∗∗∗ 0.006
[0.002] [0.003] [0.003] [0.005] [0.010] [0.015] [0.003] [0.005]

AD −0.002 −0.005 0.006∗∗ −0.000 0.020 0.014 0.005 0.001
[0.002] [0.003] [0.003] [0.005] [0.010] [0.016] [0.003] [0.005]

MO 0.003 −0.001 −0.000 −0.011∗∗ −0.000 0.009 −0.001 −0.015
[0.002] [0.003] [0.003] [0.005] [0.010] [0.015] [0.003] [0.006]

SRH 0.016∗∗∗ 0.015∗∗∗ 0.042∗∗∗ 0.019∗∗∗ 0.040∗∗∗ 0.043∗∗ 0.002 0.001
[0.002] [0.003] [0.003] [0.005] [0.010] [0.015] [0.003] [0.006]

DEP −0.010∗∗∗ −0.011∗∗∗ −0.024∗∗∗ −0.012∗∗ −0.017 −0.024 −0.002 0.002
[0.002] [0.003] [0.003] [0.005] [0.010] [0.015] [0.003] [0.006]

SWB 0.009∗∗∗ 0.009∗∗∗ 0.031∗∗∗ 0.025∗∗∗ 0.028∗∗ 0.020 0.001 −0.005
[0.002] [0.003] [0.003] [0.005] [0.010] [0.015] [0.003] [0.005]

ACT 0.007∗∗∗ 0.008∗∗ 0.020∗∗∗ 0.010∗ 0.021∗ 0.031 0.004 0.001
[0.002] [0.003] [0.003] [0.005] [0.009] [0.016] [0.003] [0.006]

Y 0.919 0.919 0.667 0.667 0.560 0.560 0.080 0.080
N 20,488 20,402 20,402 22,866 1,660 1,660 4,206 4,206

Note: The polygenic indices are standardized within each sample and birth year (mean=0, s.d.=1). All models
include controls for sex, birth-year dummies, interaction between sex and the birth-year dummies, sample fixed
effects, and the first ten principal components of the genetic-relatedness matrix. The within-family models (WF)
also include fixed effects for twin pairs. Standard errors, shown in parentheses, allow for clustering at the family
level. The significance tests are adjusted for false discovery rate within each column using the Benjamini-Hochberg
procedure. ***/**/*, indicates significance at the 1/5/10% level.
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A.2.3 Baseline results in separate samples

In the main text we present results based on a pooled sample. To check whether the estimates are unduly

driven by any of the subsamples we have re-estimated the baseline models from Table A.5 in each of

STR, WLS, MTFS and Add Health samples. The results are reported in Tables A.7 through A.10. For

convenience we also display the estimates from Table A.5 in the first column of each table. Finally, the

last column in each table reports whether or not (using F-tests) the coefficient estimates vary significantly

across the subsamples.1

The estimated PGI effects on first-order voting, self-reported voting and political participation do

not seem to vary systematically across the different samples. There are some exceptions to this rule – for

instance, the positive effects of the PGIs for risk attitudes and adventurousness on the participation index

are driven by the STR sample. Moreover, the associations between voting in first-order elections and the

PGIs for cognitive performance (strongest in STR), risk attitudes (strongest in MTFS) and self-rated

health (strongest in WLS) differ significantly across the three samples. However, the overall pattern is

one of consistency. Looking instead at Table A.8, the results for second-order voting stick out and the

pattern is rather clear: The PGI effects are, in most cases weaker in the WLS sample compared to the

STR and MTFS samples. The most obvious difference between these samples is the age composition of

the study participants. The individuals in the WLS sample are significantly older than the individuals

in the other two samples (see Table 1 in the main text). We speculate here that experience and habit

are more important for the decision to vote than genetic predispositions among older citizens. Moreover,

this may be especially so in second-order elections, which tend to be viewed as less important by voters,

parties, and the media and thus present a more information-poor electoral environment for citizens to

navigate. More research is, of course, necessary to substantiate these assertions.

1To test for significant variation in coefficient estimates we have included interaction terms between each PGI and
indicator variables for the subsamples in pooled models. We then test (using an F-test) if all interaction coefficients are
equal to 0.

9



Table A.7: Baseline results - first-order voting

All STR WLS MTFS F

EA 0.016∗∗∗ 0.017∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 3.24∗∗

[0.001] [0.001] [0.003] [0.003]
∆R2 0.514 0.730 0.178 0.368

CP 0.010∗∗∗ 0.011∗∗∗ 0.007∗ 0.005 4.05∗∗

[0.001] [0.001] [0.003] [0.003]
∆R2 0.195 0.314 0.048 0.054

EX −0.001 −0.001 0.003 −0.002 0.72
[0.001] [0.001] [0.003] [0.003]

∆R2 0.001 0.004 0.009 0.014

NE −0.004∗∗∗ −0.004∗∗∗ −0.004 −0.001 0.40
[0.001] [0.001] [0.003] [0.003]

∆R2 0.027 0.032 0.021 0.005

RI −0.002∗∗ −0.001 −0.006 −0.007∗∗ 3.47∗∗∗

[0.001] [0.001] [0.003] [0.002]
∆R2 0.011 0.002 0.034 0.134

AD −0.001 −0.001 −0.003 −0.001 0.42
[0.001] [0.001] [0.003] [0.003]

∆R2 0.003 0.001 0.012 0.002

MO 0.002∗∗ 0.002∗∗ 0.003 0.000 0.30
[0.001] [0.001] [0.003] [0.002]

∆R2 0.009 0.014 0.010 0.000

SRH 0.013∗∗∗ 0.013∗∗∗ 0.016∗∗∗ 0.006∗ 4.01∗∗∗

[0.001] [0.001] [0.003] [0.003]
∆R2 0.332 0.420 0.283 0.105

DEP −0.009∗∗∗ −0.008∗∗∗ −0.013∗∗∗ −0.005 1.50
[0.001] [0.001] [0.003] [0.003]

∆R2 0.148 0.162 0.177 0.070

SWB 0.008∗∗∗ 0.008∗∗∗ 0.007∗ 0.004 1.42
[0.001] [0.001] [0.003] [0.003]

∆R2 0.119 0.171 0.051 0.041

ACT 0.005∗∗∗ 0.005∗∗∗ 0.009∗∗ 0.002 1.30
[0.001] [0.001] [0.003] [0.003]

∆R2 0.057 0.062 0.092 0.009

Y 0.920 0.934 0.862 0.915
N 54,031 39,166 8,534 6,331

Note: The polygenic indices are standardized within each sample and birth year
(mean=0, s.d.=1). All models include controls for sex, birth-year dummies, in-
teraction between sex and the birth-year dummies, and the first ten principal
components of the genetic-relatedness matrix. Standard errors, shown in paren-
theses, allow for clustering at the family level. The significance tests are adjusted
for false discovery rate within each column using the Benjamini-Hochberg pro-
cedure. ***/**/*, indicates significance at the 1/5/10% level.
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Table A.8: Baseline results - second-order voting

All STR WLS MTFS F

EA 0.067∗∗∗ 0.080∗∗∗ 0.028∗∗∗ 0.039∗∗∗ 89.05∗∗∗

[0.002] [0.002] [0.004] [0.004]
∆R2 2.588 3.415 0.628 1.293

CP 0.042∗∗∗ 0.051∗∗∗ 0.014∗∗∗ 0.026∗∗∗ 40.60∗∗∗

[0.002] [0.002] [0.004] [0.004]
∆R2 1.019 1.378 0.171 0.570

EX 0.003 0.003 0.005 0.003 0.03
[0.002] [0.002] [0.004] [0.004]

∆R2 0.006 0.005 0.018 0.006

NE −0.022∗∗∗ −0.025∗∗∗ −0.009∗∗ −0.018∗∗∗ 6.18∗∗∗

[0.002] [0.002] [0.004] [0.004]
∆R2 0.274 0.332 0.066 0.295

RI 0.006∗∗∗ 0.010∗∗∗ −0.002 −0.005 6.43∗∗∗

[0.002] [0.002] [0.004] [0.004]
∆R2 0.023 0.051 0.005 0.021

AD 0.007∗∗∗ 0.008∗∗∗ 0.001 0.006 1.55
[0.002] [0.002] [0.004] [0.004]

∆R2 0.027 0.036 0.000 0.033

MO −0.001 −0.003 0.004 0.007 2.66∗

[0.002] [0.002] [0.004] [0.004]
∆R2 0.001 0.006 0.014 0.038

SRH 0.038∗∗∗ 0.043∗∗∗ 0.022∗∗∗ 0.031∗∗∗ 13.25∗∗∗

[0.002] [0.002] [0.004] [0.004]
∆R2 0.853 1.005 0.397 0.805

DEP −0.024∗∗∗ −0.026∗∗∗ −0.016∗∗∗ −0.023∗∗∗ 2.46∗

[0.002] [0.002] [0.004] [0.004]
∆R2 0.339 0.361 0.215 0.451

SWB 0.024∗∗∗ 0.029∗∗∗ 0.010∗∗ 0.019∗∗∗ 9.73∗∗∗

[0.002] [0.002] [0.004] [0.004]
∆R2 0.348 0.437 0.077 0.316

ACT 0.019∗∗∗ 0.021∗∗∗ 0.015∗∗∗ 0.008 4.06∗∗

[0.002] [0.002] [0.004] [0.004]
∆R2 0.206 0.245 0.178 0.050

Y 0.664 0.625 0.810 0.715
N 54,351 39,459 8,534 6,358

Note: The polygenic indices are standardized within each sample and birth year
(mean=0, s.d.=1). All models include controls for sex, birth-year dummies, in-
teraction between sex and the birth-year dummies, and the first ten principal
components of the genetic-relatedness matrix. Standard errors, shown in paren-
theses, allow for clustering at the family level. The significance tests are adjusted
for false discovery rate within each column using the Benjamini-Hochberg pro-
cedure. ***/**/*, indicates significance at the 1/5/10% level.
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Table A.9: Baseline results - self-reported voting

All MTFS AddHealth F

EA 0.050∗∗∗ 0.039∗∗∗ 0.056∗∗∗ 3.87∗∗

[0.004] [0.008] [0.005]
∆R2 1.578 1.436 2.018

CP 0.023∗∗∗ 0.022∗∗∗ 0.025∗∗∗ 0.17
[0.004] [0.008] [0.005]

∆R2 0.343 0.466 0.403

EX 0.012∗∗∗ 0.022∗∗∗ 0.008 2.62
[0.004] [0.007] [0.005]

∆R2 0.092 0.459 0.042

NE −0.020∗∗∗ −0.010 −0.024∗∗∗ 2.58
[0.004] [0.007] [0.005]

∆R2 0.263 0.092 0.396

RI 0.011∗∗ 0.009 0.012∗∗ 0.11
[0.004] [0.007] [0.005]

∆R2 0.075 0.069 0.089

AD 0.012∗∗∗ 0.011 0.012∗∗ 0.00
[0.004] [0.007] [0.005]

∆R2 0.095 0.119 0.093

MO 0.002 −0.003 0.005 0.76
[0.004] [0.008] [0.005]

∆R2 0.004 0.010 0.014

SRH 0.033∗∗∗ 0.034∗∗∗ 0.033∗∗∗ 0.00
[0.004] [0.008] [0.005]

∆R2 0.695 1.091 0.720

DEP −0.022∗∗∗ −0.021∗∗ −0.023∗∗∗ 0.03
[0.004] [0.008] [0.005]

∆R2 0.315 0.423 0.347

SWB 0.020∗∗∗ 0.029∗∗∗ 0.017∗∗∗ 1.67
[0.004] [0.008] [0.005]

∆R2 0.249 0.790 0.184

ACT 0.017∗∗∗ 0.020∗∗ 0.016∗∗∗ 0.26
[0.004] [0.007] [0.005]

∆R2 0.193 0.400 0.169

Y 0.642 0.742 0.436
N 3,407 2,333 5,633

Note: The polygenic indices are standardized within each sam-
ple and birth year (mean=0, s.d.=1). All models include con-
trols for sex, birth-year dummies, interaction between sex and
the birth-year dummies, and the first ten principal components
of the genetic-relatedness matrix. Standard errors, shown in
parentheses, allow for clustering at the family level. The sig-
nificance tests are adjusted for false discovery rate within each
column using the Benjamini-Hochberg procedure. ***/**/*, in-
dicates significance at the 1/5/10% level.
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Table A.10: Baseline results - participation index

All STR AddHealth F

EA 0.016∗∗∗ 0.018∗∗∗ 0.011∗∗∗ 5.15∗∗

[0.002] [0.002] [0.002]
∆R2 0.760 0.796 0.751

CP 0.009∗∗∗ 0.010∗∗∗ 0.006∗∗∗ 2.74∗

[0.001] [0.002] [0.002]
∆R2 0.265 0.282 0.268

EX 0.005∗∗∗ 0.006∗∗∗ 0.003 1.27
[0.002] [0.002] [0.002]

∆R2 0.087 0.099 0.076

NE −0.000 0.000 −0.001 0.02
[0.001] [0.002] [0.002]

∆R2 0.000 0.000 0.005

RI 0.009∗∗∗ 0.012∗∗∗ 0.003 10.35∗∗∗

[0.001] [0.002] [0.002]
∆R2 0.244 0.348 0.074

AD 0.006∗∗∗ 0.008∗∗∗ 0.001 6.88∗∗∗

[0.001] [0.002] [0.002]
∆R2 0.103 0.165 0.003

MO −0.003 −0.004 −0.002 0.030
[0.002] [0.002] [0.002]

∆R2 0.028 0.035 0.018

SRH 0.001 0.001 0.000 0.02
[0.002] [0.002] [0.002]

∆R2 0.004 0.003 0.004

DEP 0.002 0.002 0.001 0.12
[0.002] [0.002] [0.002]

∆R2 0.008 0.011 0.004

SWB −0.001 −0.000 −0.003 1.16
[0.001] [0.002] [0.002]

∆R2 0.003 0.000 0.053

ACT 0.003 0.004 0.000 1.11
[0.001] [0.002] [0.002]

∆R2 0.022 0.034 0.000

Y 0.070 0.090 0.029
N 14,389 9,598 4,791

Note: The polygenic indices are standardized within each sam-
ple and birth year (mean=0, s.d.=1). All models include con-
trols for sex, birth-year dummies, interaction between sex and
the birth-year dummies, and the first ten principal components
of the genetic-relatedness matrix. Standard errors, shown in
parentheses, allow for clustering at the family level. The sig-
nificance tests are adjusted for false discovery rate within each
column using the Benjamini-Hochberg procedure. ***/**/*, in-
dicates significance at the 1/5/10% level.
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A.2.4 Baseline results for separate participation items

In Table A.11 we present the baseline estimates for models using as outcomes the three separate items

included in the political participation index – whether the respondents contacted a government official,

contributed money to a political cause, and attended a political rally or march during the last 12 months

(Add Health)/5 years (STR).2 For convenience we also display the estimates for the index from Table A.5

in the first column of the table. The last column reports whether or not (using Wald tests) the coefficient

estimates vary significantly across the three outcomes.3

The overall pattern of estimates across the three different participation measures is one of consistency.

In all five cases in which the PGI effects on the participation index are statistically significant, the

corresponding effects on the constituent parts have the same sign and are, with few exceptions, also

significant. Conversely, in all cases but two (the effects of the PGIs for morningness and activity on

attending a political rally) in which the PGI effects on the participation index are non-significant, the

corresponding effects on the constituent parts are also non-significant. Still, it is interesting to note that

in two cases – the PGIs for risk attitudes and adventurousness – the effect seems to be driven by the

association with the propensity to contact government officials and to a lesser degree by contributing

money or attending rallies.

2The separate analyses for each participation item were not pre-registered.
3That is, we combine the parameter estimates and associated (co)variance matrices in each of the three models into one

parameter vector and simultaneous (co)variance matrix and then test for cross-model equality in the PGI coefficients.
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Table A.11: Baseline results - separate participation items

Index Contact Contribute Rally χ2

EA 0.016∗∗∗ 0.022∗∗∗ 0.010∗∗∗ 0.015∗∗∗ 18.01∗∗∗

[0.002] [0.003] [0.002] [0.002]
∆R2 0.760 0.476 0.226 0.430

CP 0.009∗∗∗ 0.012∗∗∗ 0.007∗∗∗ 0.008∗∗∗ 2.54
[0.001] [0.003] [0.002] [0.002]

∆R2 0.265 0.134 0.123 0.145

EX 0.005∗∗∗ 0.007∗∗ 0.005∗∗ 0.004 1.69
[0.002] [0.003] [0.002] [0.002]

∆R2 0.087 0.050 0.060 0.025

NE −0.000 −0.002 0.002 −0.001 3.28
[0.001] [0.003] [0.002] [0.002]

∆R2 0.000 0.002 0.010 0.003

RI 0.009∗∗∗ 0.016∗∗∗ 0.004∗∗ 0.006∗∗∗ 18.15∗∗∗

[0.001] [0.003] [0.002] [0.002]
∆R2 0.244 0.253 0.047 0.069

AD 0.006∗∗∗ 0.012∗∗∗ 0.002 0.003 12.79∗∗∗

[0.001] [0.003] [0.002] [0.002]
∆R2 0.103 0.135 0.015 0.017

MO −0.003 −0.002 −0.003 −0.004∗ 0.67
[0.002] [0.003] [0.002] [0.002]

∆R2 0.028 0.003 0.025 0.032

SRH 0.001 0.004 −0.001 −0.001 3.49
[0.002] [0.003] [0.002] [0.002]

∆R2 0.004 0.019 0.001 0.000

DEP 0.002 0.000 0.003 0.001 1.35
[0.002] [0.003] [0.002] [0.002]

∆R2 0.008 0.000 0.023 0.004

SWB −0.001 −0.000 −0.003 0.000 2.30
[0.001] [0.003] [0.002] [0.002]

∆R2 0.003 0.000 0.018 0.000

ACT 0.003 0.003 −0.000 0.005∗∗ 5.72∗

[0.001] [0.003] [0.002] [0.002]
∆R2 0.022 0.010 0.000 0.049

Y 0.070 0.113 0.044 0.052
N 14,389 14,389 14,387 14,388

Note: The polygenic indices are standardized within each sample and birth year
(mean=0, s.d.=1). All models include controls for sex, birth-year dummies,
interaction between sex and the birth-year dummies, sample fixed effects, and
the first ten principal components of the genetic-relatedness matrix. Standard
errors, shown in parentheses, allow for clustering at the family level. The signif-
icance tests are adjusted for false discovery rate within each column using the
Benjamini-Hochberg procedure. ***/**/*, indicates significance at the 1/5/10%
level.
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A.2.5 Mediation Analysis

In the main text we show that the ten psychological and health trait PGIs are significantly related to

voter turnout and political participation in both between- and within-family models. A natural next step

is to test whether and, if so, the degree to which degree the different PGIs influence political participation

via their respective target traits. For instance, cognitive performance is likely to partly mediate the effect

of the cognitive performance PGI on political participation. The same expectation, of course, also holds

for the other PGI-target trait combinations. It is important to keep in mind that there are multiple

reasons for not expecting the target traits to fully mediate the PGI-participation links. Above all, as

discussed in the main text, pleiotropy - the fact that one gene can influence multiple traits - makes it

highly likely that any PGI effect will be mediated via several different pathways in addition to the target

trait in question. For example, Selzam et al. (2019) recently showed that PGIs for cognitive performance,

self-rated health, and neuroticism all predict educational attainment which may have downstream effects

on a multitude of human traits, among others political participation. Second, due to measurement error

and imprecise estimation of beta weights, the PGIs will not perfectly capture the true genetic propensity

for the target traits. Third, differences in how the target traits are measured between the discovery

sample used to estimate the weights for the PGIs and the replication samples (Add Health, WLS, MTFS

and STR in our case) may further reduce the degree to which a PGI effect is mediated via its target

trait.

With these caveats in mind, Table A.12 presents coefficient estimates from a simple mediation analy-

sis. We restrict the mediation analysis in two ways. First, we need information on the target traits to test

for mediation.4 Second, we only include results for PGIs that are significantly related (at the 0.05 level)

to an outcome when restricting the sample to individuals for which we have information on the corre-

sponding target trait. In the end, this leaves us with five PGI–target trait combinations for the turnout

in first-order elections, seven PGI–target trait combinations for turnout in second-order elections, eight

PGI–target trait combinations for self-reported voting, and three PGI–target trait combinations for the

political participation index.5

We use a very simple two-step procedure to test for mediation (Baron and Kenny, 1986). First, we

re-estimate the effect of a specific PGI (e.g., the PGI for cognitive performance) on a specific outcome

for individuals with complete data on the target trait. Second, we include the target trait as a regressor

in the model. We will measure mediation as the percentage decrease in the PGI effect size between the

two models.

4For a detailed description of the availability of relevant target trait information and how these traits are measured
in each of the four samples we refer to two separate pre-analysis plans posted on the OSF website on April 14, 2021:
https://osf.io/gnv9t/, and https://osf.io/vrd75/.

5The pre-analysis plan stipulated that only within-family models should be used for the mediation analysis. However,
given the decrease in sample size and the loss of variation in the within-family models this would lead to significantly fewer
PGI–target trait combinations that could be examined in the mediation analysis (two PGI–target trait combinations for the
turnout in first-order elections, four PGI–target trait combinations for turnout in second-order elections, four PGI–target
trait combinations for self-reported voting, and no PGI–target trait combinations for the political participation index). In
light of this, we decided to deviate from the original pre-analysis plan and instead present between-family results.
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The results in Table A.12 show that the effects of the PGIs on the four outcome measures shrink

somewhat when controlling for the respective target trait. The decrease in PGI effect magnitude is

modest. On average, the target traits account for around 25% of the corresponding PGI effect. However,

there is a great deal of variation in the degree to which the the PGI effects decrease when controlling for

the corresponding target trait. As we would expect, the target traits that are measured using validated

multi-item batteries (e.g. cognitive performance, extraversion and depression) account for a larger share

of the PGI-effects compared to the target traits that are measured using only a single item (e.g. risk

attitudes, self-rated health, subjective well-being, and physical activity).

While this analysis suggests that the effects of the PGIs are partly mediated by the traits they

are constructed to predict, it also suggests that there are other PGI mechanisms influencing political

participation that are unrelated to the target traits as there are still significant and sizeable effects of

the PGIs on the four outcomes.
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Table A.12: Results - mediation

1st order 2nd order Self-reported Participation

CP PGI 0.007∗∗∗ 0.002 0.031∗∗∗ 0.014∗∗∗ 0.022∗∗∗ 0.008∗ 0.009∗∗∗ 0.004∗∗

[0.001] [0.002] [0.002] [0.003] [0.005] [0.005] [0.002] [0.002]
CP Trait 0.016∗∗∗ 0.066∗∗∗ 0.060∗∗∗ 0.020∗∗∗

[0.002] [0.003] [0.005] [0.002]

% mediated 66.0% 56.9% 64.2% 55.3%

N 23,328 23,279 6,626 8,884

EX PGI 0.006∗∗ 0.003 0.012∗∗∗ 0.006 0.005∗∗∗ 0.003∗∗

[0.003] [0.003] [0.004] [0.004] [0.002] [0.002]
EX Trait 0.028∗∗∗ 0.050∗∗∗ 0.021∗∗∗

[0.002] [0.004] [0.002]

% mediated 49.6% 47.7% 42.3%

N 21,913 7,749 14,273

NE PGI −0.004∗∗ −0.004∗∗∗ −0.017∗∗∗ −0.016∗∗∗ −0.020∗∗∗ −0.016∗∗∗

[0.001] [0.001] [0.002] [0.002] [0.004] [0.004]
NE Trait −0.005∗∗∗ −0.005∗∗ −0.037∗∗∗

[0.001] [0.002] [0.004]

% mediated 10.2% 2.3% 22.5%

N 28,404 28,087 7,748

RI PGI 0.011∗∗∗ 0.011∗∗∗ 0.009∗∗∗ 0.007∗∗∗

[0.004] [0.004] [0.001] [0.001]
RI Trait −0.009∗ 0.016∗∗∗

[0.005] [0.002]

% mediated -5.8% 20.5%

N 7,777 14,218

SRH PGI 0.011∗∗∗ 0.009∗∗∗ 0.035∗∗∗ 0.031∗∗∗ 0.033∗∗∗ 0.024∗∗∗

[0.001] [0.001] [0.002] [0.002] [0.005] [0.005]
SRH Trait 0.016∗∗∗ 0.024∗∗∗ 0.047∗∗∗

[0.002] [0.003] [0.005]

% mediated 19.1% 9.4% 28.5%

N 30,443 30,439 5,633

DEP PGI −0.007∗∗∗ −0.005∗∗∗ −0.019∗∗∗ −0.016∗∗∗ −0.023∗∗∗ −0.016∗∗∗

[0.002] [0.002] [0.003] [0.003] [0.005] [0.005]
DEP Trait −0.013∗∗∗ −0.022∗∗∗ −0.050∗∗∗

[0.002] [0.003] [0.005]

% mediated 21.9% 13.4% 30.2%

N 20,058 20,061 5,633

SWB PGI 0.006∗∗∗ 0.005∗∗∗ 0.018∗∗∗ 0.016∗∗∗ 0.020∗∗∗ 0.019∗∗∗

[0.002] [0.002] [0.003] [0.003] [0.004] [0.004]
SWB Trait 0.008∗∗∗ 0.020∗∗∗ −0.022∗∗∗

[0.002] [0.003] [0.005]

% mediated 13.8% 12.8% -5.2%

N 20,662 20,673 7,773

ACT PGI 0.014∗∗∗ 0.013∗∗∗ 0.016∗∗∗ 0.016∗∗∗

[0.003] [0.003] [0.005] [0.005]
ACT Trait 0.008∗∗∗ 0.003

[0.003] [0.005]

% mediated -4.0% 0.5%

N 16,230 5,633

Note: The polygenic indices are standardized within each sample and birth year (mean=0, s.d.=1). All models include
controls for sex, birth-year dummies, interaction between sex and the birth-year dummies, sample fixed effects, and the
first ten principal components of the genetic-relatedness matrix. ***/**/*, indicates significance at the 1/5/10% level.
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A.2.6 Confounding

We next check the degree to which the PGIs confound the relationship each target trait and the four

participation outcomes. Our approach here is very simple. First, we estimate the effect of a specific

target trait on a specific outcome (e.g., the effect of cognitive performance on second order turnout).

In the second step we control for all eleven PGIs used in this study (the ten health and psychological

trait PGIs and the EA PGI). We will measure confounding as the decrease in target trait effect size

between the two models. We restrict these models such that we only include results for target traits

that are significantly related (at the 0.05 level) to an outcome when not controlling for the PGIs. The

results are presented in Table A.13. The odd-numbered columns show results of the trait effects when

not controlling for the PGIs. The estimates displayed in the even-numbered columns are adjusted for

the PGIs.

The estimates show that controlling for the PGIs reduces the effect of the health and psychological

traits by, on average, about 11% across all models. While these results suggest only a modest amount

of confounding, it is important to remember that the PGIs do not capture all of the genetic propensity

to exhibit the health and psychological traits in focus. When more precise polygenic indices become

available in the future, it is likely that the amount of effect size reduction from controlling for relevant

PGIs will significantly increase (Becker et al., 2021).
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Table A.13: Results - confounding

1st order 2nd order Self-reported Participation
1 2 3 4 5 6 7 8

CP Trait 0.017∗∗∗ 0.015∗∗∗ 0.069∗∗∗ 0.061∗∗∗ 0.062∗∗∗ 0.053∗∗∗ 0.021∗∗∗ 0.018∗∗∗

[0.002] [0.002] [0.002] [0.003] [0.005] [0.005] [0.002] [0.002]

% confounded 10.8% 11.9% 14.7% 13.2%

N 23,328 32,279 6,626 8,884

EX Trait 0.008∗∗∗ 0.007∗∗∗ 0.028∗∗∗ 0.026∗∗∗ 0.050∗∗∗ 0.049∗∗∗ 0.022∗∗∗ 0.020∗∗∗

[0.002] [0.002] [0.002] [0.002] [0.004] [0.004] [0.002] [0.002]

% confounded 2.9% 6.9% 3.2% 5.5%

N 21,903 21,913 7,749 14,273

NE Trait −0.005∗∗∗ −0.005∗∗∗ −0.006∗∗∗ −0.004∗ −0.039∗∗∗ −0.034∗∗∗ 0.006∗∗∗ 0.006∗∗∗

[0.001] [0.001] [0.002] [0.002] [0.004] [0.004] [0.002] [0.002]

% confounded 9.9% 32.1% 14.1% 4.7%

N 28,404 28,087 7,748 13,880

RI Trait 0.015∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.016∗∗∗

[0.003] [0.003] [0.001] [0.001]

% confounded 10.8% 7.5%

N 21,247 14,218

SRH Trait 0.017∗∗∗ 0.016∗∗∗ 0.028∗∗∗ 0.022∗∗∗ 0.052∗∗∗ 0.044∗∗∗

[0.001] [0.001] [0.002] [0.002] [0.005] [0.005]

% confounded 9.2% 20.9% 14.7%

N 30,443 30,439 5,633

DEP Trait −0.014∗∗∗ −0.013∗∗∗ −0.024∗∗∗ −0.020∗∗∗ −0.052∗∗∗ −0.047∗∗∗

[0.002] [0.002] [0.003] [0.003] [0.005] [0.005]

% confounded 7.2% 15.7% 9.9%

N 20,058 20,061 5,633

SWB Trait 0.008∗∗∗ 0.008∗∗∗ 0.022∗∗∗ 0.020∗∗∗ 0.023∗∗∗ 0.022∗∗∗

[0.002] [0.002] [0.003] [0.003] [0.004] [0.004]

% confounded 6.1% 5.9% 5.4%

N 20,662 20,673 7,773

ACT Trait 0.005∗∗∗ 0.005∗∗ 0.009∗∗∗ 0.007∗∗

[0.002] [0.002] [0.003] [0.003]

% confounded 13.9% 23.8%

N 16,225 16,230

Note: All models include controls for sex, birth-year dummies, interaction between sex and the birth-year dummies, sample
fixed effects, and the first ten principal components of the genetic-relatedness matrix. The second model for each outcome
also includes controls for 11 PGIs. The polygenic indices are standardized within each sample and birth year (mean=0,
s.d.=1). ***/**/*, indicates significance at the 1/5/10% level.
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A.2.7 Sibling models

In the main text we show that the estimated effects of the health- and psychological trait PGIs on

the participation outcomes decrease somewhat in magnitude when controlling for family fixed effects,

especially so for second-order turnout and the participation index. Moreover, we argue that this pattern

of results suggests confounding due to genetic nurture rather than population stratification or assortative

mating. That is, part of the reason for why we observe an association between a PGI and an outcome

is due to the fact that a large share of the genetic markers summarized by the PGI will also be present

in the individual’s relatives and cause them to behave in certain ways with downstream effects on the

individual in question. In this section we present further results corroborating this interpretation and at

the same time illustrate the usefulness of the PGI approach for studying family socialization and peer

effects.

The bulk of previous studies on genetic nurture focus on genes linked to educational attainment. Most

of these studies examine the intergenerational transmission in educational attainment. Kong et al. (2018)

demonstrate that an educational attainment PGI based on non-transmitted parental genes is significantly

related to offspring education and that nearly 30% of the association between the PGI and education

among offspring is accounted for by parental genetic nurture effects. These results were subsequently

replicated by Bates et al. (2018). Corroborating these findings, Belsky et al. (2018), Liu (2018), and

Willoughby et al. (2019) report that a parental education PGI is related to offspring education also when

controlling for offspring’s own PGI. Finally, Selzam et al. (2019) compare within- to between-family PGI

predictions of education and cognitive traits and find that the between-family estimates are substantially

greater. Much of this within- and between-family difference disappears when controlling for family socio-

economic status, suggesting that a large share of the between-family PGI prediction is due to genetic

nurture effects.

Extant research also provides some evidence of horizontal genetic nurture between siblings. Above

all, Cawley et al. (2020) show that a person’s educational attainment is correlated with their sibling’s

PGI for educational attainment, controlling for their own PG for educational attainment.

In Table A.14 we follow the approach taken by Cawley et al. (2020) and report results from models

restricted to sibling pairs and including both subjects’ (ego) and siblings’ (alter) PGIs as predictors.

We also restrict the analysis such that we only include results for PGIs that are significantly related (at

the 0.05 level) to an outcome in between-family models in the sibling sample (see the estimates in the

odd-numbered columns in Table A.6).

Looking first at the results for first-order and self-reported turnout there are no signs of sibling genetic

nurture effects. The estimates are inconsistently signed and never statistically significant. Turning

instead to the results for second-order voter turnout the results are much clearer and strongly suggest

the presence of genetic nurturing. The estimated effects of the alter PGIs on second-order voting are non-

negligible in magnitude and always consistent with the sign of the effects of the ego PGI. On average the
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alter PGI effect amounts to 46% of the corresponding ego PGI effect. The same pattern of consistently

signed and non-negligibly sized sibling effects is also found for the political participation index. However,

likely due to the smaller sample size none of these estimates are less precisely estimated.

The difference in results for first- and second-order voting is particularly interesting. Second-order

elections are generally considered by voters, parties, and the media to be less important than first-

order presidential or national elections. Thus, citizens typically have to navigate a more information-

poor electoral environment, making it more challenging to participate. Our estimates suggest that

such conditions will increase the relative importance of the social context - here understood as the

predispositions of one’s siblings - over individual resources in determining an individual’s decision to

engage in the political sphere.
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Table A.14: Sibling models

1st order 2nd order Self-reported Participation
voting voting voting index

CP EGO 0.009∗∗∗ 0.031∗∗∗ 0.007∗∗

[0.002] [0.003] [0.003]
CP ALTER 0.000 0.013∗∗∗ 0.001

[0.002] [0.003] [0.003]

EX EGO 0.007∗∗

[0.003]
EX ALTER 0.004

[0.003]

NE EGO −0.005∗∗∗ −0.019∗∗∗

[0.002] [0.003]
NE ALTER 0.000 −0.008∗∗∗

[0.002] [0.003]

RI EGO 0.010∗∗∗ 0.012∗∗∗

[0.003] [0.003]
RI ALTER 0.002 0.005∗

[0.003] [0.003]

AD EGO 0.006∗∗

[0.003]
AD ALTER 0.004

[0.003]

SRH EGO 0.013∗∗∗ 0.029∗∗∗ 0.035∗∗∗

[0.002] [0.003] [0.011]
SRH ALTER 0.002 0.016∗∗∗ 0.004

[0.002] [0.003] [0.009]

DEP EGO −0.008∗∗∗ −0.019∗∗∗

[0.002] [0.003]
DEP ALTER −0.001 −0.007∗∗

[0.002] [0.003]

SWB EGO 0.007∗∗∗ 0.025∗∗∗ 0.011
[0.002] [0.003] [0.010]

SWB ALTER 0.001 0.006∗∗ 0.003
[0.002] [0.003] [0.009]

ACT EGO 0.006∗∗∗ 0.015∗∗∗

[0.002] [0.003]
SWB ALTER −0.000 0.006∗∗

[0.002] [0.003]

Y 0.920 0.682 0.662 0.081
N 26,567 26,764 2,948 4,585

Note: The polygenic indices are standardized within each sample and birth year
(mean=0, s.d.=1). All models include controls for sex, birth-year dummies,
interaction between sex and the birth-year dummies, sample fixed effects, and
the first ten principal components of the genetic-relatedness matrix. ***/**/*,
indicates significance at the 1/5/10% level.
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A.2.8 Gene-by-environment interaction

As our last applied example of relevant uses of PGIs, we present a simple case of a gene-by-environment

interaction, the example being the interaction between a depression PGI and educational attainment for

voter turnout. Previous research has documented consistent negative effects of depressive symptoms on

political participation (Ojeda, 2015; Ojeda and Pacheco, 2019; Landwehr and Ojeda, 2021; Gerber et al.,

2011; Ojeda and Slaughter, 2019; Engelman et al., 2021), a picture that is confirmed by our main PGI

results. Meanwhile, the so-called diathesis-stress model of depression claims that it is the combination of

vulnerability (diathesis) with an environmental stressor that triggers actual depressive episodes (Monroe

and Simons, 1991; Colodro-Conde et al., 2018). Educational attainment, in this context, thus acts as a

possible proxy for a variety of stressors induced by different socioeconomic environments.

We use data from the STR on the latest available elections, and basic cross-sectional specifications

with a simple multiplicative interaction term between a PGI and a non-genetic variable, controls for sex

and birth year fixed effects (and their interaction), as well as the top ten principal components (and their

interactions with the PGI and the moderator).

As evidenced by the significant and positive interaction terms in columns 1 and 2 in Table A.15, the

negative effect of the depression PGI on turnout is moderated by educational attainment. The marginal

effects plots (Fig. A.1) further reveal that the negative effect of the depression PGI is entirely driven

by the lower end of the education distribution and disappears at the higher end. Thus, it may be that

education (or variables associated with education) acts as a dampener on the negative turnout effects of

having a genetic susceptibility to depression.

As a robustness check, the same interaction is tested with PGIs for related traits (neuroticism and

self-rated health) in columns 3–6.

Figure A.1: Marginal effects plots, depression PGI effect on 1st/2nd Order Voting
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Table A.15: GxE interaction models

(1) (2) (3) (4) (5) (6)
VARIABLES 1st Order 2nd Order 1st Order 1st Order 2nd Order 2nd Order

EA 0.008*** 0.041*** 0.008*** 0.007*** 0.042*** 0.041***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Depression PGI -0.026*** -0.067***
(0.007) (0.013)

Depression PGI × EA 0.002*** 0.003***
(0.001) (0.001)

Neuroticism PGI -0.017** -0.054***
(0.007) (0.013)

Neuroticism PGI × EA 0.001* 0.003***
(0.001) (0.001)

SRH PGI 0.036*** 0.081***
(0.007) (0.013)

SRH PGI × EA -0.002*** -0.004***
(0.001) (0.001)

Constant 0.944** -0.491** 0.948** 0.953** -0.507** -0.540**
(0.013) (0.038) (0.014) (0.015) (0.038) (0.039)

Observations 29,461 29,067 29,461 29,461 29,067 29,067
Conotrols YES YES YES YES YES YES
R-squared 0.048 0.077 0.048 0.049 0.076 0.078

Note: All models include controls for sex, birth-year dummies, interaction between sex and the birth-year
dummies, and the first ten principal components of the genetic-relatedness matrix, as well as interactions
between these and EA and the PGI. ***/**/*, indicates significance at the 1/5/10% level.
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