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Abstract

Providing complex answers to causal questions requires both cross-case evidence for the

existence of a causal effect and within-case evidence for the mechanisms through which

this effect propagates. The former requires a robust causal identification strategy,

while the latter is more amenable to qualitative investigation using methods narrowly

tailored to mechanistic analysis, such as process tracing. However, once a cross-case

causal effect has been estimated, there is little guidance on how to select a case in

which to trace the causal mechanism. After reviewing the limitations of the algorithms

currently available, I present a novel case selection method that uses causal forests to

recover granular causal effects for each case in the sample, and show how this approach

can be used to select pathway cases in a manner consistent with their stated goal of

recovering causal mechanisms. I then briefly discuss how this framework can be ex-

tended to other types of cases, including typical and deviant cases.

Keywords: case selection, machine learning, mixed methods, pathway case, causal

forest

1

https://doi.org/10.33774/apsa-2024-11rpm ORCID: https://orcid.org/0000-0002-0700-6910 Content not peer-reviewed by APSA. License: CC BY-NC-SA 4.0

https://doi.org/10.33774/apsa-2024-11rpm
https://orcid.org/0000-0002-0700-6910
https://creativecommons.org/licenses/by-nc-sa/4.0/


1 Introduction

While the credibility revolution has improved the internal validity of quantitative analyses

that address ”effects of causes” type questions, it has not improved our understanding of

how causal effects propagate and through what mechanisms (Mahoney and Goertz, 2006).

This puts political science at odds with other hard sciences, where an explanation of why

something happens is almost always complemented by an explanation of how it happens,

which is often more important to practitioners (Darden, 2002; Illari and Williamson, 2012;

Skillings, 2015).

Causal mediation analysis, the state of the art in the quantitative study of causal mech-

anisms, allows the researcher to non-parametrically estimate and then confirm whether a

variable is a mediator, i.e. whether it is causally situated between the treatment and the

outcome, only under sequential ignorability, a stricter requirement than even randomising

treatment and intermediate variables (Imai et al., 2011; Imai and Yamamoto, 2013) 1. More-

over, even if sequential ignorability holds, such a research design effectively reduces causal

mechanisms from complex and (possibly) overdetermined processes involving multi-agent in-

teractions to a linear causal chain. Qualitative research, on the other hand, has traditionally

emphasised complex mechanistic explanations, developing and refining formal methods for

eliciting causal mechanisms and testing their validity against alternative explanations, such

as the various variants of process tracing (Beach and Pedersen, 2019; Bennett and Checkel,

2015; Humphreys and Jacobs, 2015).

In light of this (latent) complementarity, many methodologists have proposed exploiting

the different types of causal knowledge produced by qualitative and quantitative methods,

highlighting the unique strengths of each to address the limitations of the other (Blair et al.,

2019; Brady et al., 2006; Collier et al., 2010; Coppock and Kaur, 2022; Glynn and Ichino,

2015)2. Ideally, one could use the appropriate quantitative methods to establish that a

1There are alternative approaches to causal mediation anchored in structural equation modelling, but
these are often based on implicit, untestable assumptions (Cook et al., 2002; MacKinnon, 2012).

2There are, however, those who argue that there is a fundamental incompatibility between the two
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causal effect of X on Y exists at the cross-case level, and then use qualitative methods for

within-case analysis to explain in detail how the mechanism M by which the effect X → Y

propagates (and possibly also to identify the variables Mi that comprise the causal chain

underpinning the mechanism M).

However, one challenge for mixed-methods approaches is how to make the leap from

the cross-case level, which recovers ”dataset observations”, to the within-case level, which

privileges ”causal process observations” (Collier et al., 2004). In other words, what is the

appropriate procedure for selecting one case out of many through which to identify and

characterise a causal mechanism conditional on the causal effect being identified? Without

a proper answer, fundamental ontological differences would likely inhibit the adoption of

mixed-methods research designs (Gerring, 2004, pp. 351-352).

This paper proposes a data-driven method for making this ontological leap, focusing

on the setting where the presence of the theorised mechanism M is necessary for theory

generalisation over the population of cases: pathway cases (Gerring, 2007).

The rest of the paper is structured as follows. In Section 2, I explain in more detail what

pathway cases are and why they are suitable as crucial cases for testing the presence of a

causal mechanism M . In Section 3, I review the current algorithms used to select pathway

cases for in-depth analysis, and discuss their limitations in light of the goal of drawing

causal inferences. In Section 4, I present how causal forests, an algorithm for recovering

heterogeneous causal effects, can serve as a data-driven algorithm for pathway case selection.

Finally, in Section 5, I briefly discuss how the conceptual framework introduced in this paper

can be easily extended to other types of cases, including typical and deviant cases.

traditions, one that precludes pure mixed-methods (Beach, 2020)
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2 Pathway cases

2.1 The rationale behind pathway cases

One of the earliest statements on why and how to select one crucial case to test the validity of

a theoretical argument was made by Eckstein (1975). He argued that social scientists should

conduct in-depth investigations in that case in the sample most likely to be explained by that

theory, but not by competing theories (p.118). However, this strategy did not distinguish

between evidence that a theory is valid (i.e. cross-case analysis of the existence of a causal

effect X → Y ) and evidence about how the theory works to explain the outcome (i.e. within-

case analysis of what the causal mechanisms are X → M(?) → Y ). This conflation runs

counter to recent methodological advances, which show that while mechanistic evidence is

useful for explanation and for making a compelling argument in favour of a theory (Gerring,

2011, 215-217), it is not a necessary condition for causal inference (Gerring, 2010).

Recognising the limitations of the crucial case approach, Gerring (2007) introduced the

concept of a pathway case, which he argues follows the original intent of Eckstein (1975) but

is adapted to the empirical realities of contemporary political science. A pathway case is one

for which the cross-case causal relationship X → Y has been shown not only to be present

but also to be strong, but for which the mechanism M by which this causal relationship

propagates has yet to be elicited (Gerring, 2007, pp.238-239).

In this way, pathway cases are similar in spirit to typical cases in set-theoretic multi-

method research (SMMR), which are selected for within-case process tracing based on how

well they fit the cross-case relationship found through Qualitative Comparative Analysis

(Rohlfing and Schneider, 2018; Schneider and Rohlfing, 2013). However, because SMMR re-

lies on a regularity theory of causation (Mahoney, 2008; Mahoney and Acosta, 2022; Rohlfing

and Schneider, 2018), its selection algorithm cannot be easily integrated into the standard

causal inference framework used in most quantitative research.

Since pathway cases only become apparent after the cross-case causal inference was per-
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formed, they are by design diagnostic tools aimed at further exploring the depth of the causal

relationship, not at expanding its breadth (Gerring and Cojocaru, 2016, p.405-406)3. As-

suming unconfoundedness and that the magnitude of the causal effect induced by X is high,

if the theoretical argument explaining that causal effect is correct, then the pathway case

is uniquely insightful for understanding whether and how the argument appears to work,

through which processes, and through the interactions of which agents, institutions, and

enabling conditions (Gerring, 2016; Seawright and Gerring, 2008; Weller and Barnes, 2014).

Deductively, the diagnostic power of pathway cases derives from a simple consideration: if

the mechanistic argument underlying an identified causal effect is correct, then the case in

which the causal effect is strongest should provide the clearest instance of how that causal

mechanism operates.

In other words, the visibility of the causal mechanism needs to be monotonic in the

treatment effect, which makes the presence of the theorised causal mechanism in the pathway

case a necessary condition for claiming the more general presence of that mechanism in the

population of cases, and its absence strong evidence for rejecting the original theory (Gerring,

2007). If we think of pathway analysis as an empirical test of our theorised mechanism, then

failure to identify a mechanism in the pathway case would provide robust evidence against

the main theory, and its presence would provide some degree of evidence in favour of it. Thus,

depending on the specifics of each research context, pathway analysis provides at worst a

hoop test for the proposed mechanism, and at best a doubly decisive test (Collier, 2011).

2.2 Selecting pathway cases for in-depth analysis

While it is clear that pathway cases can help researchers open the black box of causality once

a cross-case effect has been identified, a major challenge is how to accurately determine the

magnitude of this causal effect in each case. Most pathway cases in the existing literature

have been selected using heuristics rather than formal algorithms, potentially compromising

3Note that this objective is distinct from that of causal mediation analysis, which aims to establish a
causal chain at the cross-case level (Imai et al., 2011).
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the validity of results derived from such within-case analyses. Some selection algorithms have

been proposed (Gerring, 2016; Weller and Barnes, 2014), but as I will show, they ultimately

rely either on informed guesses based on patterns in the data, or on simple correlational and

model fit-based measures that are potentially relevant for prediction but largely meaningless

for causal inference.

A representative example of current pathway selection algorithms comes from Gerring

(2016, pp.108-110), who proposes to compare the residuals of each observation in a full

model including the treatment X and the covariates necessary for unconfoundedness with

those in a reduced model from which X has been removed. Specifically, the author argues

that if the residual of an observation i in the full model shrinks significantly compared to the

reduced model, this provides evidence that the treatment X is responsible for moving that

observation closer to the regression line, indicating the presence of a strong causal effect. This

type of algorithm is quite common for various case selection techniques in qualitative research

(Seawright and Gerring, 2008), but at least for the pathway case it relies on ambiguity about

what represents the causal effect of a treatment X.

Even if we assume that X is conditionally ignorable in the full model, the difference in

the residuals between the two models would only give us some measure of the predictive

power of X, since the incomplete model cannot be expected to capture any causal effect of

the other variables apart from X, with the estimated coefficients of these variables being

merely nuisance parameters that cannot be meaningfully interpreted (Keele, 2015). More

generally, this kind of algorithmic confusion arises because many social scientists do not

treat the proximity of an observation i to a regression line and the strength of the causal

effect in that individual case as two separate target quantities, with the former not serving

as an approximation of the latter (Athey and Imbens, 2017, 2019). Measuring the strength

of a causal effect in each case involves counterfactual comparisons between outcomes under

different intervention states for the same i, whereas prediction involves comparisons between
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the characteristics of different cases (Mullainathan and Spiess, 2017)4. Comparisons between

units may be relevant for causal inference in limited circumstances, but making such claims

relies on strong assumptions about how the unobservable characteristics of cases in the

sample are distributed (Sekhon, 2009).

Other selection techniques raise even more straightforward issues. For example, Dafoe

and Kelsey (2014) exploit the distribution of treatment X and outcome Y together with that

of a third factor S that potentially drives heterogeneous treatment effects. The proposed

algorithm selects pathway cases based on the joint distribution of these variables in light of

the proposed theory, which is relevant to a descriptive rather than causal inference problem.

This approach is very similar to the one proposed by Weller and Barnes (2014), and followed

by many empirical political scientists, for selecting pathway cases, but the latter is compar-

ativist in nature rather than focusing identifying a crucial case. The comparative case study

design could alleviate concerns over selecting based on descriptive measures but, as a rule,

the values of treatment and outcome are not indicative of the strength of the causal effect

(Imbens and Rubin, 2015, pp.16-18).

One reason why these examples of algorithms rely on descriptive or predictive rather than

causal measures is that it is inherently impossible to measure the strength of causal effects

in each case using the traditional tools of econometrics. To explain this, I rely on the causal

framework introduced by Rubin (1974) following the pioneering work of Neyman (1923). In

the baseline scenario, where we assume the existence of a binary treatment Wi ∈ {0, 1},

each observation is endowed with two potential outcomes that depend on the treatment

status: Yi(Wi = 0) and Yi(Wi = 1) or, for simplicity, Yi(1) and Yi(0). In the real world,

however, we can only observe the outcome associated with whether or not the treatments

were actually administered to unit i, which can be expressed by the switching equation as

Yi = Yi(1)Wi + Yi(0)(1 −Wi). If Wi = 1 then Yi(0) is not known and if Wi = 0 then Yi(1)

4A separate but equally problematic issue with this algorithm is that, since model complexity is not
penalised, a reduced model that includes a large number of covariates that are sufficiently correlated with
X could result in some very small differences in residuals that are not even indicative of predictive power,
but of inappropriate model selection and large collinearity (Kadane and Lazar, 2004; Tibshirani, 1996)
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is not known. The fact that we cannot observe realisations of both potential outcomes Yi(0)

and Yi(1) is commonly referred to as the fundamental problem of causal inference (Holland,

1986), and transforms causal identification into a missing data problem (Rubin, 1976).

Therefore, the individual treatment effect ITE = Yi(1)−Yi(0) cannot be calculated from

the available data, whether experimental or observational. However, the ITE would have

been precisely the causal estimand that would have allowed us to quantify the strength of the

causal effect in each case and thus optimally select a pathway case for within-case analysis. In

fact, both experimental and quasi-experimental methods recognise our inability to estimate

the ITE as the status quo and instead attempt to obtain an unbiased estimate of an average

causal effect, such as the average treatment effect, ATE = E[Yi(1) − Yi(0)], or local and

conditional versions of the ATE for techniques such as instrumental variables. However, the

ATE provides insufficiently granular causal knowledge for the selection of the pathway case,

as its estimated value is constant for each observation in the dataset. This is acknowledged

by many scholars who discuss the inadequacy of average causal effects for pathway analysis

(Weller and Barnes, 2014, p.38), but their solution is to work with descriptive measures for

each case as a second-best option, whereas I offer a data-driven solution that remains true

to the goal of causal inference.

Nevertheless, this discussion highlights the necessary conditions for an ideal algorithm

suitable for selecting pathway cases. First, it should be based on estimated causal effects

rather than on descriptive or predictive measures. Second, it should follow from, or at least

not contradict, claims about the existence of the estimated ATE. Third, it should go beyond

the ATE and attempt to measure more personalised treatment effects that come as close as

possible to the unobserved ITE. Then, by comparing these proxies for ITE, one would be

able to select a pathway case for which the causal effect is strongest.
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3 Causal forests for pathway case selection

3.1 Heterogeneous treatment effects estimation

The limitations of working with average causal quantities are well recognised in the existing

literature, ranging from medicine to epidemiology to marketing and political campaigning

(Chernozhukov et al., 2018; Imai and Strauss, 2011; Imai and Ratkovic, 2013). Traditionally,

this has been addressed by searching for moderators after credibly recovering the ATE, which

would ideally allow us to learn which features of the observations increase the causal power

of treatment X. However, actually performing causal moderation, rather than just some

version of subgroup analysis, requires very strong assumptions that are unlikely to be met

in most observational studies (Bansak, 2021).

In practice, therefore, the identification of heterogeneous effects has been reduced to

estimating linear models with interaction terms, which are then given explicit or implicit

causal interpretations, even though there is no evidence that the theorised moderator is

not correlated with unobservable characteristics (Keele and Stevenson, 2021). Apart from

endogeneity, another problem with such an approach is that it allows researchers to iteratively

search for more extreme values of causal effects for particular subgroups of the population

and then report only these, despite their potential spuriousness.

Advances in machine learning (ML) have explicitly addressed these problems by devel-

oping novel techniques to identify more granular causal quantities in an honest way that

still yields valid asymptotic confidence intervals for the underlying treatment effect (Athey

and Imbens, 2016; Athey et al., 2019; Nie and Wager, 2021; Wager and Athey, 2018). At

the heart of these developments is a very simple problem of applied policy: how to learn for

which observations in the sample the treatment would be most effective? For example, for

people with which socio-demographic characteristics would a vaccine against a new virus be

most effective? Who should we offer a training programme to, knowing that they are likely

to benefit?
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However, the same caveat discussed earlier must be taken into account: most ML tech-

niques have been developed for, and are therefore useful for, prediction problems (Grimmer

et al., 2021). Causal inference, as a very specific type of prediction (i.e. predicting what

would happen after manipulating a treatment X, holding all other factors constant) done

through an ML lens, requires special attention and can only be achieved if certain assump-

tions hold, similar to the case of standard econometric tools. If these assumptions do not

hold, even the most complex ML models will fail to recover unbiased causal estimates, or

even to detect the minimally sufficient set of covariates necessary to satisfy unconfoundedness

(Hünermund et al., 2023).

For a long time, this was a conceptual distinction that limited the scope of ML and its

usefulness for causal inference. In recent years, however, rapid progress has been made in

integrating big data methods with the rules for causal inference outlined in the potential

outcomes framework, giving rise to a novel research programme whose goal is to learn from

the data how treatment X has different effect sizes based on the characteristics of the units.

Formally, it’s important to note that this research programme still does not assume that we

can recover the counterfactual ITE = Yi(1) − Yi(0) from the observable data, but it does

claim that we can reconstruct very granular conditional average treatment effects (CATE)

given by E[Yi(1) − Yi(0)|Z = z], where Z = z denotes that an observation has the set of

features z from feature space Z (Vegetabile, 2021). For example, instead of learning about

the effect of a vaccine on the whole population, we can measure the difference in effect

between very specific groups, such as white women and black men. Or we might learn that a

training programme focused on digital literacy would make the biggest difference to people

aged 18-49 in rural areas.

I argue that beyond policy evaluation, these ML-based tools for identifying heterogeneous

treatment effects can be fruitful for isolating sufficiently granular causal effects that would

allow us to select appropriate cases for pathway analysis. Particularly in a setting with

continuous covariates, the CATE computed for each observation can be considered as an
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approximation of the ITE, or at least as the best approximation that current algorithms,

ML or otherwise, are able to provide. While there are several ML-based estimators that could

potentially be used for this task (Knaus et al., 2021), I proceed to describe causal forests,

one of the most popular causal ML algorithms (Wager and Athey, 2018; Athey et al., 2019).

3.2 Causal forests as estimators for CATE

Causal forests are generalised random forest algorithms that aim to accurately measure how

the effect of a causal factor X varies across the sample, while correctly predicting the value

of the causal effect induced (Athey and Imbens, 2016; Wager and Athey, 2018; Athey et al.,

2019). While random forests are ensemble learning methods based on constructing a large

number of decision trees in order to minimize the prediction error for an outcome Y between

the leaves of each tree (Breiman, 2001), causal forests attempt to simultaneously maximize

the difference in ATEs between the leaves while accurately estimating the ATE (Wager and

Athey, 2018). This dual objective distinguishes causal forests from many other ML-based

causal inference tools that explicitly address only the prediction problem.

The exact algorithm that causal forests use to recover CATEs is quite technical, but

it’s core can be explained in a straightforward way. To ensure that the causal forest does

not identify random noise and treat it as the source of causal heterogeneity, Wager and

Athey (2018) proposes to split the data used to train the model into two sub-samples,

one for splitting (i.e., capturing heterogeneity, the C in CATE) and one for estimation (i.e.,

recovering the causal effect, the ATE in CATE). The splitting sub-sample is used to construct

each causal tree under the two conditions mentioned above. In turn, the causal tree is used

on the estimation sub-sample to actually measure the causal effect. The treatment effect

within each leaf of a decision tree is calculated as the difference in means between the score

of the outcome Y in the two treatment and control groups.

Statistically, a crucial aspect of causal forests is the asymptotic normality of the treat-

ment effects recovered from the causal forest, which means that as the sample size grows
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large, the distribution of the estimated treatment effects approaches a normal distribution.

Consequently, we can accurately calculate the variance and thus generate confidence intervals

for the estimates. Overall, this means that not only can we predict the CATE for a given set

of features Zi = z for an observation i, but we can also measure the uncertainty around the

CATE. This is particularly important for case selection issues, where we want our empirical

tests that we apply to the data to be as stringent as possible in order to provide as much

mechanistic evidence as possible, which boils down to comparisons not only between point

estimates, but also between the lower bounds of the effects in each case.

3.3 Selecting pathway cases with causal forests

As stated, the main objective of the pathway case selection procedure remains to identify

the case from the population in which the causal effect is strongest. In the language of

the potential outcomes framework, we need to identify the observation i that maximises

Yi(1) − Yi(0). Due to the fundamental problem of causal inference, this is impossible, so

the second best becomes the one that maximises Yi(1) − Yi(0)|Zi = z for a detailed set

of observable characteristics Z. Thus, the problem of selecting pathways boils down to

estimating heterogeneous treatment effects, for which I have shown that causal forests provide

a robust solution.

With this in mind, how should a researcher proceed? First, credible evidence for the

existence of a causal effect needs to be established at the cross-case level. This involves

either an experimental or quasi-experimental research design, coupled with robustness checks,

placebo tests and sensitivity analyses, and possibly setting extreme bounds on the effect

(Coppock and Kaur, 2022; Eggers et al., 2023).

Second, assuming that such an analysis has been performed and an ATE has been iden-

tified, we proceed with the selection of a pathway case. This involves transitioning from

ATE to CATE, which, as discussed earlier, can be done efficiently using a causal forest. In

practice, this would entail a researcher implementing the causal forest algorithm and then
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predicting, for each observation in the dataset, the CATE together with the 95% confidence

interval. A pathway case would be one with the highest CATE of the causal factor X on

the outcome Y . Alternatively, one could compare the lower bounds of the CATEs.

Two points are worth noting, as they often come up in discussions of pathways cases.

First, how to deal with outliers? Gerring (2007) implies that cases that appear to be extreme

outliers in the proposed causal model should be excluded from candidacy for in-depth within-

case analysis. The argument against extreme outliers is that they generally do not provide

confirmatory evidence for a proposition (p.248). While, in general, extreme outliers should

be carefully examined using available case knowledge to learn why they have non-standard

values in Y , there is no reason to automatically exclude them from consideration. In fact,

it could be crucial to learn specifically why the CATE is highest for such an outlier, and

whether outlier patterns correspond to higher CATEs, which could potentially call the model

specification into question. However, if the researcher is determined to remove outliers, causal

forest estimation would not preclude this; in fact, learning the CATE might even improve

the researcher’s ability to distinguish whether an outlier is the result of causally meaningful

processes or just an idiosyncratic observation, possibly due to poor data quality.

Second, the best case for pathway analysis often displays stable causal patterns over time,

in the case of panel data. This is because usually, to test a theoretical argument, we want

the strong cross-case causal effect not to be strong in one year and then suddenly dissipate,

but to evolve over time so that the in-depth investigation can follow these processes and

identify the actors responsible for their unfolding. A simple solution would be to include the

time of each observation as one of the characteristics of each observation. Then the CATE of

the observations would also take into account the time dimension, as we would have a causal

effect for each period in which a case is observed. With this information in hand, one could

pursue several strategies for selecting pathways cases. First, one could select cases for which

the CATE is stable over time, which would imply a constant effect. Second, when studying

path-dependent processes with increasing returns, researchers could select cases where the
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causal effect increases over time. Similarly, when studying processes that dissipate, maybe

due to some post-treatment intervention, one could select cases with a high initial CATE

that decreases steadily and monotonically over time.

One could possibly argue that it is not just the period that changes over time, but also

other characteristics of observation i, i.e. Zi,t ̸= Zt,¬i. While future research, particularly in

ML, is likely to provide more appropriate answers for recovering unbiased period averages of

different CATEs, one solution would be to always start with the cases that have the highest

CATE for period t, theorise how the features are likely to evolve over time alongside the new

CATE, if at all, and select cases that best fit such theoretical hunches. To some, deviating

from a purely data-driven approach to case selection may seem like a failure of such an

approach. This is not the case, as causal inference is always based on untestable assumptions

for which theory can provide guiding answers (Coppock and Kaur, 2022). However, even if

one remains sceptical about the fusion of theoretical and empirical knowledge, causal forests

still remain an appropriate solution for a large class of static causal models, or for models in

which features remain stable over time.

4 Potential extensions

Pathway cases are not the only setting of interest for within-case analysis; on the contrary,

most qualitative work, particularly that which uses process tracing, focuses on typical and

deviant cases. Examining the presence of a theorised causal mechanism in typical and

deviant cases allows us to understand the causal chain of actors and processes through

which an effect propagates, as well as to define the scope conditions under which the causal

mechanism operates (Elman et al., 2016; Gerring, 2016; Schneider, 2024).

While a general theory of case selection is beyond the scope of this paper, I argue that,

conceptually, causal forests and the CATEs they estimate for each observation in the dataset

provide intuitive ways of thinking about typical and deviant cases. In addition, I develop
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the first case selection protocol in which typicality and deviance are defined in terms of the

causal mechanism rather than the presence of the outcome, since the latter is likely to be

determined by multiple causal factors not necessarily captured by the theory being tested.

To unpack this claim, I introduce two new concepts, knowledge of which I argue is both

necessary and sufficient to determine which cases are best suited for intensive analysis as

either typical or deviant.

First, we need to know how much the size of the causal effect in a particular case i

deviates from the average, the ATE, which constitutes an indicator of the relative causal

relevance (RCR) of that case. Formally, we have to compute the standardized difference

between the CATE and the ATE for each case i, as shown in Equation 1.

RCRi =
E[Yi(1)− Yi(0)|Z = zi]− E[Yi(1)− Yi(0)]√

1
N−1

∑N
j=1 (E[Yj(1)− Yj(0)|Z = zj]− E[Yj(1)− Yj(0)])

2
(1)

Second, we need to know the size of the causal condition X in each case i relative to its

mean value. This measures how ”strong” the causal shock of X is, a metric I call trigger

severity (TS). Trigger severity is a descriptive metric that can be calculated directly from

the data, as in Equation 2. In other words, TSi tells us how many standard deviations away

from the mean each Xi is in the dataset.

TSi =
Xi −

(
1
N

∑N
j=1 Xj

)
√

1
N−1

∑N
j=1

(
Xj −

(
1
N

∑N
k=1Xk

))2
(2)

By exploiting information about the distribution of TS and RCR in the dataset, we can

describe a variety of case study situations. For example, the most suitable pathway case is

given by the observation with the highest RCR, regardless of TS. However, in the unlikely

event that several observations share the same RCR, the TS can be used to distinguish

between them. One solution would be to take the case with the highest RCR and lowest TS,

which would give you the case where the smallest causal factor triggered the largest causal
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effect. The remainder of this section explores how to select typical and deviant cases using

the TS and RCR score distributions.

4.1 Typical cases

Typical cases are defined as cases that are representative of the observable distribution

(Seawright and Gerring, 2008; Gerring, 2016; Gerring and Cojocaru, 2016). Again, we face

the similar problem that such definitions imply causally relevant quantities, such as the

generalisability of the causal properties identified in a particular setting, while using only

descriptive or predictive metrics. Usually, typical cases are defined as being ”close to the

regression line”, a metric that has no bearing in causal terms.

In the framework proposed in this paper, a typical case i would be one in which the TSo

is as close as possible to zero, implying an average trigger of the causal mechanism, as well as

one in which RCRi is also close to zero, indicating that its CATE is approaching the ATE,

exactly what typical cases intuitively look for5. However, using RCR and TS scores instead

of descriptive and predictive measures has other advantages for the researcher. In particular,

it enables one to assess whether the impact of the causal mechanism is monotonic in the size

of its trigger.

Typically, quantitative researchers assume that causal factors X make an additive con-

tribution to the outcome Y . In other words, adding more of X will produce more of Y .

To explain this in a theory, one needs a causal mechanism that allows for such additivity.

However, this is largely unproven in either quantitative or qualitative scholarship and is as-

sumed by fiat. By relying on TS and RCR, it is possible to select a set of cases that allow

us to validate the additivity assumption. Specifically, we need to look at two cases and un-

pack the causal mechanism previously identified in a typical/pathway case. First, the causal

mechanisms should be less powerful than average when RCR is negative and TS is negative.

5While both conditions are relevant for selecting a pure typical case, if one had to choose between a case
with null RCR and non-null TS and a case with null TS but RCR is non-null , I recommend the former,
because ultimately the search for causal mechanisms implies prioritising causal effects and not second-order
notions of how such effects were induced.
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Second, the same mechanisms should be stronger than average when RCR is positive and

TS is positive. This is because, if the causal mechanisms allows for additivity in X, it must

be the case that (more) less X leads to a lower impact of the mechanism, which ultimately

translates to a (higher) lower value of Y .

4.2 Deviant cases

Deviant cases are usually defined as cases that, on the basis of observable properties, should

conform to a causal argument but do not, making them anomalies in the report of an existing

theory (Gerring and Cojocaru, 2016, p.399). They are essential for learning the limits of a

causal mechanism, the conditions necessary for its presence and non-anomalous unfolding,

and the scope conditions that define the population to which the mechanism is applied.

Following the conceptual language of the Rubin causal model, deviant cases i are those in

which one would expect the CATE to be of normal magnitude, given the magnitude of the

causal condition X. In the framework I propose, this implies a TS above zero and a RCR

below one; or conversely, a TS below zero and a RCR above one. Since several cases could

satisfy these properties, I propose the following formula for the degree of deviation DDi:

DDi = |TSi|+ |RCRi| − |TSi +RCRi| (3)

In cases where TS and RCR are aligned in their directionality - both have either positive

or negative values - the formula essentially nullifies the degree of deviation, as DDi = 0.

This finding is consistent with the conventional understanding that cases with aligned causal

effect size and causal condition intensity do not represent deviant cases. Conversely, when

TS and RCR diverge in their signs, the formula amplifies the degree of deviation, so that

DDi > 0. Such cases, where the size of the causal effect (RCR) and the intensity of the

causal condition (TS) move counter-intuitively in opposite directions, are emblematic of the

anomalous or deviant cases within causal analysis. Deviant cases should be selected as those
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with the maximum DDi, i.e. those where the gap between what we would expect (the

CATE) based on the observable properties (X) is the largest. When available, both types

of deviant cases should be analyzed: negative TS-positve RCR, positive TS-negative RCR.

5 Conclusions

Intensive case study methods have recently seen a resurgence, drawing more on the formality

of quantitative methods to ensure that mixed-methods approaches are robust and not sen-

sitive to subjective researcher decisions (Coppock and Kaur, 2022; Fairfield and Charman,

2017; Humphreys and Jacobs, 2015). However, most of the developments are related to how

to conduct the analysis to identify and unpack complex causal mechanisms, without taking

into account that such tools are only meaningful if the cases of interest have been selected

according to the same rules as those driving the quantitative causal identification.

To fill the current lacuna, I present a data-driven method for selecting pathway cases

that provide the necessary conditions for identifying a general causal mechanism. This

algorithm is rooted in the Rubin causal model, making it compatible with the standard

toolkit of methods on which political science relies for design-based identification, ranging

from regression discontinuity designs to instrumental variables. I demonstrate the superiority

of this algorithm in direct contract to currently available algorithms, which I argue are

predicated on either describing predictive rather than causal quantities. I then provide a

brief guide to implementing this pathway case selection algorithm, including a discussion of

how to overcome potential challenges.

Finally, I move beyond pathway cases and provide more general metrics for selecting

different types of cases. Using new metrics that assess the relative size of the causal shock

and causal mechanism in each case, I show how researchers can identify the best typical and

deviant cases for intensive analysis. Taken together, the proposed case selection framework

should allow for a smoother ontological leap from cross-case quantitative to within-case
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qualitative analysis.
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