Dyotropic Rearrangement of an Iron–Aluminium Complex

29 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ligand exchange processes at metal complexes underpin their reactivity and catalytic applications. While mechanisms of ligand exchange at single site complexes are well established, occurring through textbook associative, dissociative and interchange mechanisms, those involving heterometallic complexes are less well developed. Here we report the reactions of a well-defined Fe–Al hydride complex with exogeneous ligands (CO and CNR, R = Me, tBu, Xyl = 2,6-Me2C6H3). Based on DFT calculations we suggest that these reactions occur through a dyotropic rearrangement, this involves initial coordination of the exogeneous ligand at Al followed by migration to Fe, with simultaneous migration of a hydride ligand from Fe to Al. Such processes are rare for heterometallic complexes. We study the bonding and mechanism of the dyotropic rearrangement through in-depth computational analysis (NBO, IBOs, CLMO analysis, QTAIM, NCIplot, IMGH), shedding new light on how the electronic structure of the heterometallic core responds to the migration of ligands between metal sites. The dyotropic rearrangement fundamentally changes the nature of the hydride ligands, exposing new nucleophilic reactivity as evidenced by insertion reactions with CO2, isocyanates, as well as isocyanides.

Keywords

bimetallic chemistry
iron
aluminum
hydride
dyotropic rearrangement

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimentala and computational details. Spectroscopic data.
Actions
Title
Cif
Description
XRD data
Actions
Title
Coordinates
Description
Computational Coords.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.