Increasing Precision in Survey Experiments Without Introducing Bias

01 June 2020, Version 1
This content is an early or alternative research output and has not been peer-reviewed at the time of posting.

Abstract

The use of survey experiments has surged in political science as a method for estimating causal effects. By far, the most common design is the between-subjects design in which the outcome is only measured posttreatment. This design relies heavily on recruiting a large number of subjects to achieve adequate statistical power. Alternative designs that involve repeated measurement of the dependent variable promise greater precision, but are rarely used out of fears that these designs will bias treatment effects (e.g., due to consistency pressures). Across six studies, we assess this conventional wisdom by testing experimental designs against each other. Our results demonstrate that repeated measures designs substantially increase precision, while introducing little to no bias. These designs also offer new insights into the nature of treatment effects. We conclude by encouraging researchers to adopt repeated measures designs and providing guidelines for when and how to use them.

Keywords

survey experiments
statistical power
consistency bias
repeated measures

Supplementary materials

Title
Description
Actions
Title
Appendix
Description
Appendix for “Increasing Precision in Survey Experiments Without Introducing Bias”
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.