Methodology

Methodology

Applying the MIDAS Touch: How to Handle Missing Values in Large and Complex Data

Ranjit Lall Author ORCID home | opens in new tab London School of Economics and Political Science
,
Thomas Robinson University of Oxford
Abstract
Principled methods for analyzing data with missing values, most notably multiple imputation, have become increasingly popular among political scientists. However, existing multiple imputation strategies can struggle to handle the kinds of large and complex datasets that are also becoming common in the discipline. We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of dimensionality-reducing neural networks known as denoising autoencoders, which corrupt a subset of input data and attempt to reconstruct it through a series of nested nonlinear transformations. We repurpose denoising autoencoders for multiple imputation by treating missing values as an additional portion of corrupted data, drawing imputations from a model trained to minimize the reconstruction error on the originally observed portion. A host of tests involving both real and simulated data illustrate MIDAS's accuracy and scalability. We provide open-source software for implementing MIDAS.
Summary of changes from Version 2
Updated version
Content
Thumbnail image of content item
Comments
Log in using your APSA account or Register to comment
Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy – please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here .
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.